Convolutional Neural Network Quantification of Gleason Pattern 4 and Association With Biochemical Recurrence in Intermediate-Grade Prostate Tumors

生化复发 前列腺切除术 前列腺癌 危险系数 断点群集区域 卷积神经网络 比例危险模型 病理 肿瘤科 医学 内科学 癌症 人工智能 计算机科学 置信区间 受体
作者
Yalei Chen,Ian Loveless,Tiffany Nakai,Rehnuma Newaz,Firas F. Abdollah,Craig G. Rogers,Oudai Hassan,Dhananjay Chitale,Kanika Arora,Sean R. Williamson,Nilesh Gupta,Benjamin A. Rybicki,Sudha Sadasivan,Albert M. Levin
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (7): 100157-100157 被引量:2
标识
DOI:10.1016/j.modpat.2023.100157
摘要

Differential classification of prostate cancer grade group (GG) 2 and 3 tumors remains challenging, likely because of the subjective quantification of the percentage of Gleason pattern 4 (%GP4). Artificial intelligence assessment of %GP4 may improve its accuracy and reproducibility and provide information for prognosis prediction. To investigate this potential, a convolutional neural network (CNN) model was trained to objectively identify and quantify Gleason pattern (GP) 3 and 4 areas, estimate %GP4, and assess whether CNN-predicted %GP4 is associated with biochemical recurrence (BCR) risk in intermediate-risk GG 2 and 3 tumors. The study was conducted in a radical prostatectomy cohort (1999-2012) of African American men from the Henry Ford Health System (Detroit, Michigan). A CNN model that could discriminate 4 tissue types (stroma, benign glands, GP3 glands, and GP4 glands) was developed using histopathologic images containing GG 1 (n = 45) and 4 (n = 20) tumor foci. The CNN model was applied to GG 2 (n = 153) and 3 (n = 62) tumors for %GP4 estimation, and Cox proportional hazard modeling was used to assess the association of %GP4 and BCR, accounting for other clinicopathologic features including GG. The CNN model achieved an overall accuracy of 86% in distinguishing the 4 tissue types. Furthermore, CNN-predicted %GP4 was significantly higher in GG 3 than in GG 2 tumors (P = 7.2 × 10-11). %GP4 was associated with an increased risk of BCR (adjusted hazard ratio, 1.09 per 10% increase in %GP4; P = .010) in GG 2 and 3 tumors. Within GG 2 tumors specifically, %GP4 was more strongly associated with BCR (adjusted hazard ratio, 1.12; P = .006). Our findings demonstrate the feasibility of CNN-predicted %GP4 estimation, which is associated with BCR risk. This objective approach could be added to the standard pathologic assessment for patients with GG 2 and 3 tumors and act as a surrogate for specialist genitourinary pathologist evaluation when such consultation is not available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助林狗采纳,获得10
刚刚
hh完成签到 ,获得积分10
1秒前
1秒前
2秒前
迷路竹完成签到,获得积分10
2秒前
3秒前
酷猫发布了新的文献求助10
3秒前
icey发布了新的文献求助10
4秒前
CodeCraft应助龙彦采纳,获得10
4秒前
蓁蓁发布了新的文献求助10
4秒前
Camellia完成签到 ,获得积分10
5秒前
5秒前
miss发布了新的文献求助10
5秒前
乐乐应助花痴的小松鼠采纳,获得10
6秒前
6秒前
笑点低的秋蝶完成签到,获得积分10
6秒前
7秒前
斯文败类应助jinhongyangkim采纳,获得10
8秒前
温暖的天与完成签到 ,获得积分10
8秒前
8秒前
无极微光应助TJW采纳,获得20
9秒前
量子星尘发布了新的文献求助10
10秒前
Syx_rcees完成签到,获得积分10
11秒前
外向怜晴发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
今后应助学术女战士采纳,获得50
12秒前
13秒前
MoPunk完成签到,获得积分20
13秒前
leiyuekai关注了科研通微信公众号
13秒前
隔壁老韩发布了新的文献求助10
14秒前
Liuu发布了新的文献求助10
14秒前
倔强的驴关注了科研通微信公众号
14秒前
bk201完成签到 ,获得积分10
14秒前
15秒前
SciGPT应助miss采纳,获得10
15秒前
英俊的铭应助曲线采纳,获得10
16秒前
萝卜干完成签到,获得积分10
16秒前
liuxiao发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337