Convolutional Neural Network Quantification of Gleason Pattern 4 and Association With Biochemical Recurrence in Intermediate-Grade Prostate Tumors

生化复发 前列腺切除术 前列腺癌 危险系数 断点群集区域 卷积神经网络 比例危险模型 病理 肿瘤科 医学 内科学 癌症 人工智能 计算机科学 置信区间 受体
作者
Yalei Chen,Ian Loveless,Tiffany Nakai,Rehnuma Newaz,Firas F. Abdollah,Craig G. Rogers,Oudai Hassan,Dhananjay Chitale,Kanika Arora,Sean R. Williamson,Nilesh Gupta,Benjamin A. Rybicki,Sudha Sadasivan,Albert M. Levin
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (7): 100157-100157 被引量:2
标识
DOI:10.1016/j.modpat.2023.100157
摘要

Differential classification of prostate cancer grade group (GG) 2 and 3 tumors remains challenging, likely because of the subjective quantification of the percentage of Gleason pattern 4 (%GP4). Artificial intelligence assessment of %GP4 may improve its accuracy and reproducibility and provide information for prognosis prediction. To investigate this potential, a convolutional neural network (CNN) model was trained to objectively identify and quantify Gleason pattern (GP) 3 and 4 areas, estimate %GP4, and assess whether CNN-predicted %GP4 is associated with biochemical recurrence (BCR) risk in intermediate-risk GG 2 and 3 tumors. The study was conducted in a radical prostatectomy cohort (1999-2012) of African American men from the Henry Ford Health System (Detroit, Michigan). A CNN model that could discriminate 4 tissue types (stroma, benign glands, GP3 glands, and GP4 glands) was developed using histopathologic images containing GG 1 (n = 45) and 4 (n = 20) tumor foci. The CNN model was applied to GG 2 (n = 153) and 3 (n = 62) tumors for %GP4 estimation, and Cox proportional hazard modeling was used to assess the association of %GP4 and BCR, accounting for other clinicopathologic features including GG. The CNN model achieved an overall accuracy of 86% in distinguishing the 4 tissue types. Furthermore, CNN-predicted %GP4 was significantly higher in GG 3 than in GG 2 tumors (P = 7.2 × 10-11). %GP4 was associated with an increased risk of BCR (adjusted hazard ratio, 1.09 per 10% increase in %GP4; P = .010) in GG 2 and 3 tumors. Within GG 2 tumors specifically, %GP4 was more strongly associated with BCR (adjusted hazard ratio, 1.12; P = .006). Our findings demonstrate the feasibility of CNN-predicted %GP4 estimation, which is associated with BCR risk. This objective approach could be added to the standard pathologic assessment for patients with GG 2 and 3 tumors and act as a surrogate for specialist genitourinary pathologist evaluation when such consultation is not available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽莫言完成签到,获得积分10
刚刚
共享精神应助小危酱采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
Teanka应助张二狗采纳,获得30
刚刚
浮游应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
大龙哥886应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
送给可爱的人完成签到,获得积分20
1秒前
zjq发布了新的文献求助10
1秒前
大龙哥886应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Kane发布了新的文献求助10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
张雅琪应助mmyhn采纳,获得10
2秒前
2秒前
韭黄发布了新的文献求助10
2秒前
科研丁完成签到,获得积分10
2秒前
顾矜应助嗯啊啊啊啊采纳,获得10
3秒前
3秒前
简单应助欧子采纳,获得20
4秒前
4秒前
4秒前
eawea完成签到,获得积分10
5秒前
小二郎应助Kane采纳,获得10
5秒前
5秒前
达雨完成签到,获得积分10
6秒前
搜集达人应助忆之采纳,获得10
6秒前
6秒前
youxiu1112完成签到,获得积分10
6秒前
lll完成签到 ,获得积分10
7秒前
7秒前
研友_VZG7GZ应助Rason采纳,获得10
7秒前
7秒前
苏鑫完成签到,获得积分10
7秒前
浮游应助韭黄采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478