Convolutional Neural Network Quantification of Gleason Pattern 4 and Association With Biochemical Recurrence in Intermediate-Grade Prostate Tumors

生化复发 前列腺切除术 前列腺癌 危险系数 断点群集区域 卷积神经网络 比例危险模型 病理 肿瘤科 医学 内科学 癌症 人工智能 计算机科学 置信区间 受体
作者
Yalei Chen,Ian Loveless,Tiffany Nakai,Rehnuma Newaz,Firas F. Abdollah,Craig G. Rogers,Oudai Hassan,Dhananjay Chitale,Kanika Arora,Sean R. Williamson,Nilesh Gupta,Benjamin A. Rybicki,Sudha Sadasivan,Albert M. Levin
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (7): 100157-100157 被引量:2
标识
DOI:10.1016/j.modpat.2023.100157
摘要

Differential classification of prostate cancer grade group (GG) 2 and 3 tumors remains challenging, likely because of the subjective quantification of the percentage of Gleason pattern 4 (%GP4). Artificial intelligence assessment of %GP4 may improve its accuracy and reproducibility and provide information for prognosis prediction. To investigate this potential, a convolutional neural network (CNN) model was trained to objectively identify and quantify Gleason pattern (GP) 3 and 4 areas, estimate %GP4, and assess whether CNN-predicted %GP4 is associated with biochemical recurrence (BCR) risk in intermediate-risk GG 2 and 3 tumors. The study was conducted in a radical prostatectomy cohort (1999-2012) of African American men from the Henry Ford Health System (Detroit, Michigan). A CNN model that could discriminate 4 tissue types (stroma, benign glands, GP3 glands, and GP4 glands) was developed using histopathologic images containing GG 1 (n = 45) and 4 (n = 20) tumor foci. The CNN model was applied to GG 2 (n = 153) and 3 (n = 62) tumors for %GP4 estimation, and Cox proportional hazard modeling was used to assess the association of %GP4 and BCR, accounting for other clinicopathologic features including GG. The CNN model achieved an overall accuracy of 86% in distinguishing the 4 tissue types. Furthermore, CNN-predicted %GP4 was significantly higher in GG 3 than in GG 2 tumors (P = 7.2 × 10-11). %GP4 was associated with an increased risk of BCR (adjusted hazard ratio, 1.09 per 10% increase in %GP4; P = .010) in GG 2 and 3 tumors. Within GG 2 tumors specifically, %GP4 was more strongly associated with BCR (adjusted hazard ratio, 1.12; P = .006). Our findings demonstrate the feasibility of CNN-predicted %GP4 estimation, which is associated with BCR risk. This objective approach could be added to the standard pathologic assessment for patients with GG 2 and 3 tumors and act as a surrogate for specialist genitourinary pathologist evaluation when such consultation is not available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dream完成签到 ,获得积分10
刚刚
ZJH完成签到 ,获得积分10
2秒前
apparate完成签到,获得积分10
4秒前
dldldl完成签到,获得积分10
8秒前
9秒前
21秒前
松柏完成签到 ,获得积分10
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
byron完成签到 ,获得积分10
23秒前
甜甜圈完成签到 ,获得积分10
23秒前
伊笙完成签到 ,获得积分0
27秒前
zjw完成签到 ,获得积分10
28秒前
Marco_hxkq发布了新的文献求助10
28秒前
ztayx完成签到 ,获得积分10
31秒前
历史真相发布了新的文献求助10
31秒前
34秒前
37秒前
量子星尘发布了新的文献求助10
44秒前
无字诉题完成签到 ,获得积分10
44秒前
胖胖完成签到 ,获得积分0
47秒前
PPPPPP完成签到,获得积分10
48秒前
50秒前
xmqaq完成签到,获得积分10
52秒前
i2stay完成签到,获得积分0
52秒前
53秒前
56秒前
活力的妙之完成签到 ,获得积分10
56秒前
方方完成签到 ,获得积分10
57秒前
qnqqq发布了新的文献求助10
57秒前
量子星尘发布了新的文献求助10
59秒前
小耿木木完成签到,获得积分10
1分钟前
小迷糊完成签到 ,获得积分10
1分钟前
dmr完成签到,获得积分10
1分钟前
1分钟前
outbed完成签到,获得积分10
1分钟前
tigger完成签到,获得积分10
1分钟前
一行白鹭上青天完成签到 ,获得积分0
1分钟前
不可靠月亮完成签到,获得积分10
1分钟前
sunny完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651420
求助须知:如何正确求助?哪些是违规求助? 4784722
关于积分的说明 15053723
捐赠科研通 4810070
什么是DOI,文献DOI怎么找? 2572937
邀请新用户注册赠送积分活动 1528830
关于科研通互助平台的介绍 1487848