Convolutional Neural Network Quantification of Gleason Pattern 4 and Association With Biochemical Recurrence in Intermediate-Grade Prostate Tumors

生化复发 前列腺切除术 前列腺癌 危险系数 断点群集区域 卷积神经网络 比例危险模型 病理 肿瘤科 医学 内科学 癌症 人工智能 计算机科学 置信区间 受体
作者
Yalei Chen,Ian Loveless,Tiffany Nakai,Rehnuma Newaz,Firas F. Abdollah,Craig G. Rogers,Oudai Hassan,Dhananjay Chitale,Kanika Arora,Sean R. Williamson,Nilesh Gupta,Benjamin A. Rybicki,Sudha Sadasivan,Albert M. Levin
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (7): 100157-100157 被引量:2
标识
DOI:10.1016/j.modpat.2023.100157
摘要

Differential classification of prostate cancer grade group (GG) 2 and 3 tumors remains challenging, likely because of the subjective quantification of the percentage of Gleason pattern 4 (%GP4). Artificial intelligence assessment of %GP4 may improve its accuracy and reproducibility and provide information for prognosis prediction. To investigate this potential, a convolutional neural network (CNN) model was trained to objectively identify and quantify Gleason pattern (GP) 3 and 4 areas, estimate %GP4, and assess whether CNN-predicted %GP4 is associated with biochemical recurrence (BCR) risk in intermediate-risk GG 2 and 3 tumors. The study was conducted in a radical prostatectomy cohort (1999-2012) of African American men from the Henry Ford Health System (Detroit, Michigan). A CNN model that could discriminate 4 tissue types (stroma, benign glands, GP3 glands, and GP4 glands) was developed using histopathologic images containing GG 1 (n = 45) and 4 (n = 20) tumor foci. The CNN model was applied to GG 2 (n = 153) and 3 (n = 62) tumors for %GP4 estimation, and Cox proportional hazard modeling was used to assess the association of %GP4 and BCR, accounting for other clinicopathologic features including GG. The CNN model achieved an overall accuracy of 86% in distinguishing the 4 tissue types. Furthermore, CNN-predicted %GP4 was significantly higher in GG 3 than in GG 2 tumors (P = 7.2 × 10-11). %GP4 was associated with an increased risk of BCR (adjusted hazard ratio, 1.09 per 10% increase in %GP4; P = .010) in GG 2 and 3 tumors. Within GG 2 tumors specifically, %GP4 was more strongly associated with BCR (adjusted hazard ratio, 1.12; P = .006). Our findings demonstrate the feasibility of CNN-predicted %GP4 estimation, which is associated with BCR risk. This objective approach could be added to the standard pathologic assessment for patients with GG 2 and 3 tumors and act as a surrogate for specialist genitourinary pathologist evaluation when such consultation is not available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饱满一刀发布了新的文献求助20
1秒前
2秒前
謓言发布了新的文献求助10
2秒前
林厌寻发布了新的文献求助30
3秒前
赘婿应助听书人采纳,获得10
4秒前
Jonah发布了新的文献求助10
4秒前
5秒前
李华完成签到,获得积分10
5秒前
ZORROR发布了新的文献求助30
5秒前
shanika发布了新的文献求助10
8秒前
9秒前
光亮含羞草完成签到,获得积分10
9秒前
赘婿应助大方的半莲采纳,获得10
10秒前
11秒前
科目三应助彪壮的绮烟采纳,获得10
11秒前
华仔应助JulyH采纳,获得10
12秒前
12秒前
13秒前
15秒前
12345发布了新的文献求助10
15秒前
发100篇SCI完成签到,获得积分10
15秒前
shanika完成签到,获得积分10
16秒前
巧克力布朗尼完成签到 ,获得积分10
16秒前
16秒前
Ali应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得20
17秒前
17秒前
朴实凝阳发布了新的文献求助10
17秒前
小二郎应助一个橡果采纳,获得10
17秒前
饱满一刀完成签到,获得积分10
18秒前
彪壮的绮烟完成签到,获得积分10
18秒前
听书人发布了新的文献求助10
18秒前
19秒前
李心怡完成签到,获得积分10
19秒前
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608