亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network Quantification of Gleason Pattern 4 and Association With Biochemical Recurrence in Intermediate-Grade Prostate Tumors

生化复发 前列腺切除术 前列腺癌 危险系数 断点群集区域 卷积神经网络 比例危险模型 病理 肿瘤科 医学 内科学 癌症 人工智能 计算机科学 置信区间 受体
作者
Yalei Chen,Ian Loveless,Tiffany Nakai,Rehnuma Newaz,Firas F. Abdollah,Craig G. Rogers,Oudai Hassan,Dhananjay Chitale,Kanika Arora,Sean R. Williamson,Nilesh Gupta,Benjamin A. Rybicki,Sudha Sadasivan,Albert M. Levin
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (7): 100157-100157 被引量:2
标识
DOI:10.1016/j.modpat.2023.100157
摘要

Differential classification of prostate cancer grade group (GG) 2 and 3 tumors remains challenging, likely because of the subjective quantification of the percentage of Gleason pattern 4 (%GP4). Artificial intelligence assessment of %GP4 may improve its accuracy and reproducibility and provide information for prognosis prediction. To investigate this potential, a convolutional neural network (CNN) model was trained to objectively identify and quantify Gleason pattern (GP) 3 and 4 areas, estimate %GP4, and assess whether CNN-predicted %GP4 is associated with biochemical recurrence (BCR) risk in intermediate-risk GG 2 and 3 tumors. The study was conducted in a radical prostatectomy cohort (1999-2012) of African American men from the Henry Ford Health System (Detroit, Michigan). A CNN model that could discriminate 4 tissue types (stroma, benign glands, GP3 glands, and GP4 glands) was developed using histopathologic images containing GG 1 (n = 45) and 4 (n = 20) tumor foci. The CNN model was applied to GG 2 (n = 153) and 3 (n = 62) tumors for %GP4 estimation, and Cox proportional hazard modeling was used to assess the association of %GP4 and BCR, accounting for other clinicopathologic features including GG. The CNN model achieved an overall accuracy of 86% in distinguishing the 4 tissue types. Furthermore, CNN-predicted %GP4 was significantly higher in GG 3 than in GG 2 tumors (P = 7.2 × 10-11). %GP4 was associated with an increased risk of BCR (adjusted hazard ratio, 1.09 per 10% increase in %GP4; P = .010) in GG 2 and 3 tumors. Within GG 2 tumors specifically, %GP4 was more strongly associated with BCR (adjusted hazard ratio, 1.12; P = .006). Our findings demonstrate the feasibility of CNN-predicted %GP4 estimation, which is associated with BCR risk. This objective approach could be added to the standard pathologic assessment for patients with GG 2 and 3 tumors and act as a surrogate for specialist genitourinary pathologist evaluation when such consultation is not available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电灯胆完成签到 ,获得积分10
1秒前
HY完成签到 ,获得积分10
6秒前
hhq完成签到 ,获得积分10
11秒前
jjj完成签到 ,获得积分10
27秒前
jjj关注了科研通微信公众号
35秒前
HYH发布了新的文献求助10
39秒前
43秒前
43秒前
xinchi发布了新的文献求助30
48秒前
小泽发布了新的文献求助10
52秒前
1分钟前
Owen应助xinchi采纳,获得10
1分钟前
小草发布了新的文献求助10
1分钟前
xinchi完成签到,获得积分10
1分钟前
Jasper应助小泽采纳,获得10
1分钟前
hhhhhh应助annathd采纳,获得10
1分钟前
清飏举报ni求助涉嫌违规
1分钟前
桐桐应助KSung采纳,获得10
1分钟前
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
wy.he应助陶醉的烤鸡采纳,获得10
1分钟前
dlfg完成签到,获得积分10
1分钟前
2分钟前
kd1412完成签到 ,获得积分10
2分钟前
KSung发布了新的文献求助10
2分钟前
华仔应助XX采纳,获得10
2分钟前
清飏举报vivianzzz求助涉嫌违规
2分钟前
2分钟前
XX完成签到,获得积分20
2分钟前
2021完成签到 ,获得积分10
2分钟前
XX发布了新的文献求助10
2分钟前
情怀应助ceeray23采纳,获得20
2分钟前
Elthrai完成签到 ,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
小马完成签到,获得积分10
3分钟前
小马发布了新的文献求助10
3分钟前
科目三应助XX采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634707
求助须知:如何正确求助?哪些是违规求助? 4731892
关于积分的说明 14988959
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519820
关于科研通互助平台的介绍 1479929