Convolutional Neural Network Quantification of Gleason Pattern 4 and Association With Biochemical Recurrence in Intermediate-Grade Prostate Tumors

生化复发 前列腺切除术 前列腺癌 危险系数 断点群集区域 卷积神经网络 比例危险模型 病理 肿瘤科 医学 内科学 癌症 人工智能 计算机科学 置信区间 受体
作者
Yalei Chen,Ian Loveless,Tiffany Nakai,Rehnuma Newaz,Firas F. Abdollah,Craig G. Rogers,Oudai Hassan,Dhananjay Chitale,Kanika Arora,Sean R. Williamson,Nilesh Gupta,Benjamin A. Rybicki,Sudha Sadasivan,Albert M. Levin
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (7): 100157-100157 被引量:2
标识
DOI:10.1016/j.modpat.2023.100157
摘要

Differential classification of prostate cancer grade group (GG) 2 and 3 tumors remains challenging, likely because of the subjective quantification of the percentage of Gleason pattern 4 (%GP4). Artificial intelligence assessment of %GP4 may improve its accuracy and reproducibility and provide information for prognosis prediction. To investigate this potential, a convolutional neural network (CNN) model was trained to objectively identify and quantify Gleason pattern (GP) 3 and 4 areas, estimate %GP4, and assess whether CNN-predicted %GP4 is associated with biochemical recurrence (BCR) risk in intermediate-risk GG 2 and 3 tumors. The study was conducted in a radical prostatectomy cohort (1999-2012) of African American men from the Henry Ford Health System (Detroit, Michigan). A CNN model that could discriminate 4 tissue types (stroma, benign glands, GP3 glands, and GP4 glands) was developed using histopathologic images containing GG 1 (n = 45) and 4 (n = 20) tumor foci. The CNN model was applied to GG 2 (n = 153) and 3 (n = 62) tumors for %GP4 estimation, and Cox proportional hazard modeling was used to assess the association of %GP4 and BCR, accounting for other clinicopathologic features including GG. The CNN model achieved an overall accuracy of 86% in distinguishing the 4 tissue types. Furthermore, CNN-predicted %GP4 was significantly higher in GG 3 than in GG 2 tumors (P = 7.2 × 10-11). %GP4 was associated with an increased risk of BCR (adjusted hazard ratio, 1.09 per 10% increase in %GP4; P = .010) in GG 2 and 3 tumors. Within GG 2 tumors specifically, %GP4 was more strongly associated with BCR (adjusted hazard ratio, 1.12; P = .006). Our findings demonstrate the feasibility of CNN-predicted %GP4 estimation, which is associated with BCR risk. This objective approach could be added to the standard pathologic assessment for patients with GG 2 and 3 tumors and act as a surrogate for specialist genitourinary pathologist evaluation when such consultation is not available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会会完成签到 ,获得积分10
刚刚
艾小晗发布了新的文献求助10
1秒前
Ppp完成签到,获得积分10
1秒前
科研通AI2S应助落寞的新晴采纳,获得10
1秒前
科研通AI6应助等待的初翠采纳,获得50
1秒前
qiqi发布了新的文献求助10
2秒前
小z完成签到,获得积分10
2秒前
高高兴兴发布了新的文献求助10
3秒前
科研通AI6应助霸气剑通采纳,获得10
3秒前
空人有情完成签到 ,获得积分10
4秒前
4秒前
嘉禾发布了新的文献求助20
4秒前
orixero应助老实小虾米采纳,获得10
4秒前
SSSimon发布了新的文献求助10
4秒前
Hello应助整齐的戒指采纳,获得10
4秒前
自觉鸵鸟完成签到 ,获得积分10
5秒前
顾矜应助ou采纳,获得10
5秒前
Jasper应助123采纳,获得10
6秒前
沉默乌冬面完成签到,获得积分10
6秒前
Jane完成签到 ,获得积分10
6秒前
7秒前
yuan发布了新的文献求助10
7秒前
朱虾仁完成签到,获得积分10
7秒前
斯文败类应助研友_nV2ROn采纳,获得10
8秒前
勤奋丸子发布了新的文献求助10
8秒前
失眠鸭完成签到,获得积分10
8秒前
10秒前
贪玩的莫茗完成签到,获得积分10
10秒前
11秒前
完美世界应助EnjieLin采纳,获得10
11秒前
小蘑菇应助swallow采纳,获得10
11秒前
12秒前
拾起发布了新的文献求助10
12秒前
13秒前
张天宝真的爱科研完成签到,获得积分10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
13秒前
情怀应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760