已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of the Ibuprofen Loading Capacity of MOFs by Machine Learning

阿达布思 Boosting(机器学习) 范畴变量 支持向量机 梯度升压 随机森林 机器学习 人工智能 计算机科学
作者
Xujie Liu,Yang Wang,Jiongpeng Yuan,Xiaojing Li,Siwei Wu,Ying Bao,Zhenzhen Feng,Feilong Ou,Yan He
出处
期刊:Bioengineering [MDPI AG]
卷期号:9 (10): 517-517 被引量:10
标识
DOI:10.3390/bioengineering9100517
摘要

Metal-organic frameworks (MOFs) have been widely researched as drug delivery systems due to their intrinsic porous structures. Herein, machine learning (ML) technologies were applied for the screening of MOFs with high drug loading capacity. To achieve this, first, a comprehensive dataset was gathered, including 40 data points from more than 100 different publications. The organic linkers, metal ions, and the functional groups, as well as the surface area and the pore volume of the investigated MOFs, were chosen as the model's inputs, and the output was the ibuprofen (IBU) loading capacity. Thereafter, various advanced and powerful machine learning algorithms, such as support vector regression (SVR), random forest (RF), adaptive boosting (AdaBoost), and categorical boosting (CatBoost), were employed to predict the ibuprofen loading capacity of MOFs. The coefficient of determination (R2) of 0.70, 0.72, 0.66, and 0.76 were obtained for the SVR, RF, AdaBoost, and CatBoost approaches, respectively. Among all the algorithms, CatBoost was the most reliable, exhibiting superior performance regarding the sparse matrices and categorical features. Shapley additive explanations (SHAP) analysis was employed to explore the impact of the eigenvalues of the model's outputs. Our initial results indicate that this methodology is a well generalized, straightforward, and cost-effective method that can be applied not only for the prediction of IBU loading capacity, but also in many other biomaterials projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
英姑应助野椒搞科研采纳,获得10
4秒前
Jmax发布了新的文献求助10
4秒前
lvsehx发布了新的文献求助10
5秒前
7秒前
小豆子完成签到 ,获得积分10
7秒前
qzj发布了新的文献求助10
8秒前
随机子应助lvsehx采纳,获得10
10秒前
zou发布了新的文献求助10
10秒前
11秒前
小瞎鱼发布了新的文献求助10
13秒前
Jmax完成签到,获得积分10
15秒前
祝我论文产出完成签到 ,获得积分10
15秒前
16秒前
hyy完成签到 ,获得积分10
17秒前
18秒前
18秒前
sci来来来发布了新的文献求助10
18秒前
18秒前
科研美少女完成签到 ,获得积分10
19秒前
FashionBoy应助lvsehx采纳,获得10
20秒前
20秒前
嘿嘿嘿发布了新的文献求助10
22秒前
24秒前
24秒前
舒心发布了新的文献求助10
25秒前
25秒前
26秒前
30秒前
31秒前
31秒前
thuuu完成签到,获得积分10
34秒前
qzj完成签到,获得积分20
34秒前
37秒前
研友_VZG7GZ应助野椒搞科研采纳,获得10
37秒前
高兴吐司发布了新的文献求助10
38秒前
hwaeb完成签到 ,获得积分10
40秒前
情怀应助7t1n9采纳,获得10
42秒前
嗯哼应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164662
求助须知:如何正确求助?哪些是违规求助? 2815515
关于积分的说明 7909748
捐赠科研通 2475233
什么是DOI,文献DOI怎么找? 1317996
科研通“疑难数据库(出版商)”最低求助积分说明 631984
版权声明 602282