Prediction of the Ibuprofen Loading Capacity of MOFs by Machine Learning

阿达布思 Boosting(机器学习) 范畴变量 支持向量机 梯度升压 随机森林 机器学习 人工智能 计算机科学
作者
Xujie Liu,Yang Wang,Jiongpeng Yuan,Xiaojing Li,Siwei Wu,Ying Bao,Zhenzhen Feng,Feilong Ou,Yan He
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:9 (10): 517-517 被引量:10
标识
DOI:10.3390/bioengineering9100517
摘要

Metal-organic frameworks (MOFs) have been widely researched as drug delivery systems due to their intrinsic porous structures. Herein, machine learning (ML) technologies were applied for the screening of MOFs with high drug loading capacity. To achieve this, first, a comprehensive dataset was gathered, including 40 data points from more than 100 different publications. The organic linkers, metal ions, and the functional groups, as well as the surface area and the pore volume of the investigated MOFs, were chosen as the model's inputs, and the output was the ibuprofen (IBU) loading capacity. Thereafter, various advanced and powerful machine learning algorithms, such as support vector regression (SVR), random forest (RF), adaptive boosting (AdaBoost), and categorical boosting (CatBoost), were employed to predict the ibuprofen loading capacity of MOFs. The coefficient of determination (R2) of 0.70, 0.72, 0.66, and 0.76 were obtained for the SVR, RF, AdaBoost, and CatBoost approaches, respectively. Among all the algorithms, CatBoost was the most reliable, exhibiting superior performance regarding the sparse matrices and categorical features. Shapley additive explanations (SHAP) analysis was employed to explore the impact of the eigenvalues of the model's outputs. Our initial results indicate that this methodology is a well generalized, straightforward, and cost-effective method that can be applied not only for the prediction of IBU loading capacity, but also in many other biomaterials projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xr发布了新的文献求助10
3秒前
传奇3应助科研进化中采纳,获得10
3秒前
7秒前
小马甲应助xr采纳,获得10
7秒前
wutong完成签到,获得积分10
7秒前
科研通AI2S应助zorofu5采纳,获得10
8秒前
zcbb完成签到,获得积分10
10秒前
Orange应助楼剑愁采纳,获得10
12秒前
wishes完成签到 ,获得积分10
12秒前
lyn发布了新的文献求助10
13秒前
论文顺利发布了新的文献求助10
14秒前
深情白风完成签到 ,获得积分10
17秒前
寂寞的灵安完成签到,获得积分10
18秒前
19秒前
SYLH应助曾珍采纳,获得50
22秒前
N型半导体发布了新的文献求助10
26秒前
GongSyi完成签到 ,获得积分10
26秒前
28秒前
楼剑愁完成签到,获得积分10
31秒前
31秒前
32秒前
楼剑愁发布了新的文献求助10
33秒前
李健应助研友_Ze0vBn采纳,获得10
35秒前
敢干发布了新的文献求助10
35秒前
炙热的笑翠完成签到,获得积分10
35秒前
36秒前
36秒前
nn发布了新的文献求助10
36秒前
da完成签到,获得积分20
37秒前
桐桐应助LSW采纳,获得10
40秒前
da发布了新的文献求助10
41秒前
还单身的心情完成签到 ,获得积分10
44秒前
崔志海完成签到,获得积分10
44秒前
李华完成签到 ,获得积分10
46秒前
husy完成签到,获得积分10
46秒前
nn完成签到,获得积分10
47秒前
49秒前
花影完成签到 ,获得积分10
49秒前
49秒前
51秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343