Improved electrocatalytic performance of Ni nano pebbles decorated 2D Fe based MXene nanosheets for direct alcohol (methanol, ethanol and ethylene glycol) fuel cell application
In this work, we report the solid-state reaction-assisted synthesis of the iron-based MAX phase compound (Fe3AlC2 MAX; where M- metal, A- aluminum, and X- carbide), which is solvothermal etched and exfoliated to yield 2D iron (Fe)-MXene. The nanosheet-like morphology of the Fe-MXene is confirmed via TEM and SEM analysis. The 2D Fe-MXene nanosheets are further decorated with nickel (Ni) nano pebbles through the simple electrodeposition technique on a screen-printed carbon electrode (Ni@FC/SPCE). The electrode displays a peak mass activity of 525.5, 742.8, and 910.2 mA/mg for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and ethylene–glycol oxidation reaction (EgOR), respectively. The Ni nano pebbles have excellent electrocatalytic activity owing to their multiple oxidation states (Ni2+/Ni3+) and catalytic active sites which enhance the alcohol oxidation reaction while the metallic sites of the Fe3C2 nanosheets contribute to high electrical conductivity and stability of the electrode. The as-fabricated Ni@FC/SPCE electrode exhibits high stability with outstanding capacity retention of ∼ 88%, ∼95%, and ∼ 75% for MOR, EOR, and EgOR after 10000 s of chronoamperometry analysis. This performance of the Ni@FC/SPCE as a non-noble, cost-effective, and stable nano-catalyst with excellent anti-carbon monoxide (anti-CO) poisoning properties proves it an ideal platform for DAFC applications.