A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk

架构人行横道 行人 社会力量模型 流量(数学) 流量(计算机网络) 模拟 人行横道 计算机科学 非线性系统 运输工程 工程类 数学 物理 几何学 计算机安全 量子力学
作者
Libi Fu,Ying Zhang,Huigui Qin,Qingxin Shi,Qiyi Chen,Yunqian Chen,Yongqian Shi
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:174: 113813-113813 被引量:9
标识
DOI:10.1016/j.chaos.2023.113813
摘要

Mixed-traffic crosswalks with disordered e-bikes are one of the most common conflict zones in urban traffic. The frequent interactions between pedestrians and e-bikes may result in a reduction in traffic efficiency and safety at intersections. It is necessary to understand nonlinear dynamics of the mixed traffic flow. This study presents a modified social force model to describe complex phenomena of pedestrian-e-bike mixed flow at a signalized crosswalk. Geometry of e-bikes, visual range and typical behaviors (i.e., avoidance behaviors) are introduced in our model, and compared with an observational experiment. The proportion of e-bikes and the impact of the lane of e-bikes on pedestrians' walking comfort and safety are discussed. The arrival rate of e-bikes and the impact of the setting of the lane of e-bikes are analyzed. It is proved that pedestrians' comfort decreases with the increasing proportion of e-bikes. The pressure of the pedestrian-e-bike mixed flow is higher than that at a conventional crosswalk without e-bikes. The maximum crossing time of e-bikes decreases with the increasing width of the lane of e-bikes. Correspondingly, when the width of the lane of e-bikes increases, the average speed of e-bikes increases. Results suggest that an appropriate width of the lane of e-bikes has a positive influence on mixed flow. The study is helpful to an in-depth understanding of nonlinear dynamics in pedestrian-e-bike mixed flow, and is beneficial to safe pedestrian facility design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WLL完成签到,获得积分10
刚刚
刚刚
罗mian发布了新的文献求助10
刚刚
轻松的雨旋完成签到,获得积分10
1秒前
星辰大海应助小宇采纳,获得10
1秒前
啦啦啦发布了新的文献求助10
2秒前
zxk完成签到,获得积分10
2秒前
2秒前
3秒前
xjx完成签到 ,获得积分10
3秒前
酷炫大树发布了新的文献求助10
4秒前
orixero应助凶狠的盼柳采纳,获得10
4秒前
阿翼完成签到 ,获得积分10
4秒前
妮露的修狗完成签到,获得积分10
4秒前
乐园完成签到,获得积分10
4秒前
开朗满天完成签到 ,获得积分10
5秒前
5秒前
5秒前
成就缘分发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
li发布了新的文献求助10
6秒前
胡枝子发布了新的文献求助30
7秒前
季悦完成签到,获得积分10
7秒前
BaiX完成签到,获得积分10
7秒前
7秒前
顾矜应助ttssooe采纳,获得10
7秒前
8秒前
共享精神应助罗mian采纳,获得10
8秒前
亭语完成签到 ,获得积分0
9秒前
重要清涟完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
BaiX发布了新的文献求助10
10秒前
10秒前
路旁小白完成签到,获得积分10
10秒前
枫桥完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672