黄曲霉毒素
食品科学
化学
轨道轨道
真菌毒素
食用菌
抗氧化剂
生物降解
质谱法
生物化学
色谱法
蘑菇
有机化学
标识
DOI:10.1016/j.jhazmat.2023.132021
摘要
Aflatoxin B1 (AFB1) is the most hazardous mycotoxin, posing risks to public health. Utilization of bio-based materials to biodegrade AFB1 is a green strategy to overcome this issue. The investigation aimed to screen for endogenous protective enzymes in bio-based material-edible rosemary based on ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS)-proteomics and ascertain their impacts on the biodegradation and biotransformation of AFB1, and the trade-offs of multilevel metabolism of the animal-derived foods through untargeted metabolomics. The proteomics results verified that bio-based material-edible rosemary (0.20%, w/w) significantly up-regulated glutathione S-transferase and stimulated the down-regulation of cytochrome P450 1A2 levels via activating AhR nuclear translocation in rosemary-pickled AFB1-contaminated goat meat. Metabolomics results demonstrated that edible rosemary substantially increased histidine and glutathione implicated in the antioxidant status of goat meat. More importantly, edible rosemary with high endogenous protective enzyme content could efficiently biodegrade AFB1 in goat meat. We first unveiled that rosemary could not only efficiently biodegrade AFB1 up to 90.20% (20.00–1.96 μg kg−1) but also elevate the bio-ingestion quality of goat meat. These findings suggest that the bio-based material-rosemary is an efficient and environmentally friendly approach for biodegrading AFB1 and elevating the bio-ingestion composition of goat meat.
科研通智能强力驱动
Strongly Powered by AbleSci AI