Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach

密度泛函理论 带隙 静水压力 半导体 材料科学 费米能级 钙钛矿(结构) 混合功能 卤化物 电子结构 凝聚态物理 化学物理 化学 计算化学 光电子学 热力学 结晶学 无机化学 物理 量子力学 电子
作者
Ismahan Duz Parrey,Fuat Bilican,Celal Kurşun,H.H. Kart,Khursheed Ahmad Parrey
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (29): 26577-26589 被引量:19
标识
DOI:10.1021/acsomega.3c03469
摘要

Due to their intrinsic stability and reduced toxicity, lead-free halide double perovskite semiconductors have become potential alternatives to lead-based perovskites. In the present study, we used density functional theory simulations to investigate the mechanical stability and band gap evolution of double perovskites Cs2AgBiX6 (X = Cl and Br) under an applied pressure. To investigate the pressure-dependent properties, the hydrostatic pressure induced was in the range of 0-100 GPa. The mechanical behaviors indicated that the materials under study are both ductile and mechanically stable and that the induced pressure enhances the ductility. As a result of the induced pressure, the covalent bonds transformed into metallic bonds with a reduction in bond lengths. Electronic properties, energy bands, and electronic density of states were obtained with the hybrid HSE06 functional, including spin-orbit coupling (HSE06 + SOC) calculations. The electronic structure study revealed that Cs2AgBiX6 samples behave as X-Γ indirect gap semiconductors, and the gap reduces with the applied pressure. The pressure-driven samples ultimately transform from the semiconductor to a metallic phase at the given pressure range. Also, the calculations demonstrated that the applied pressure and spin-orbit coupling of the states pushed VBM and CBM toward the Fermi level which caused the evolution of the band gap. The relationship between the structure and band gap demonstrates the potential for designing lead-free inorganic perovskites for optoelectronic applications, including solar cells as well as X-ray detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨怡红发布了新的文献求助10
1秒前
LovelyYy发布了新的文献求助10
1秒前
研友_5Z46A5完成签到,获得积分10
1秒前
1秒前
orixero应助海蓝博采纳,获得10
1秒前
漫漫发布了新的文献求助10
2秒前
DD完成签到,获得积分20
2秒前
bellaluna完成签到,获得积分10
2秒前
2秒前
3秒前
大气的氧发布了新的文献求助10
3秒前
3秒前
djh完成签到,获得积分0
3秒前
英姑应助Lazyneko采纳,获得10
3秒前
苗条的善斓完成签到,获得积分10
3秒前
贪玩的跳跳糖完成签到,获得积分10
3秒前
爱撒娇的妙竹完成签到,获得积分10
5秒前
guanoo完成签到,获得积分10
5秒前
求是完成签到,获得积分20
5秒前
gyhmm完成签到,获得积分10
5秒前
刘勇完成签到,获得积分10
6秒前
6秒前
宝藏发布了新的文献求助10
6秒前
6秒前
落泺完成签到 ,获得积分10
6秒前
YBHTLLLL完成签到,获得积分10
7秒前
大个应助AN采纳,获得10
7秒前
槑槑发布了新的文献求助10
7秒前
7秒前
英俊的铭应助fairy采纳,获得30
7秒前
7秒前
zzrg发布了新的文献求助10
7秒前
Continue完成签到,获得积分10
7秒前
白踏歌发布了新的文献求助10
8秒前
殷晓阳发布了新的文献求助10
8秒前
8秒前
Owen应助静素雅格采纳,获得10
8秒前
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848