清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Contextualizing protein representations using deep learning on protein networks and single-cell data

顶峰 电池类型 背景(考古学) 计算生物学 计算机科学 细胞 人工智能 生物 医学 遗传学 内科学 古生物学 放射治疗计划 放射治疗
作者
Michelle M. Li,Yepeng Huang,Marissa Sumathipala,Man Liang,Alberto Valdeolivas,Ashwin N. Ananthakrishnan,Katherine P. Liao,Daniel Marbach,Marinka Žitnik
标识
DOI:10.1101/2023.07.18.549602
摘要

Understanding protein function and developing molecular therapies require deciphering the cell types in which proteins act as well as the interactions between proteins. However, modeling protein interactions across diverse biological contexts, such as tissues and cell types, remains a significant challenge for existing algorithms. We introduce P innacle , a flexible geometric deep learning approach that is trained on contextualized protein interaction networks to generate context-aware protein representations. Leveraging a human multiorgan single-cell transcriptomic atlas, P innacle provides 394,760 protein representations split across 156 cell type contexts from 24 tissues and organs. P innacle ’s contextualized representations of proteins reflect cellular and tissue organization and P innacle ’s tissue representations enable zero-shot retrieval of the tissue hierarchy. Pretrained P innacle ’s protein representations can be adapted for downstream tasks: to enhance 3D structure-based protein representations for important protein interactions in immuno-oncology (PD-1/PD-L1 and B7-1/CTLA-4) and to study the effects of drugs across cell type contexts. P innacle outperforms state-of-the-art, yet context-free, models in nominating therapeutic targets for rheumatoid arthritis and inflammatory bowel diseases, and can pinpoint cell type contexts that predict therapeutic targets better than context-free models (29 out of 156 cell types in rheumatoid arthritis; 13 out of 152 cell types in inflammatory bowel diseases). P innacle is a graph-based contextual AI model that dynamically adjusts its outputs based on biological contexts in which it operates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
30秒前
41秒前
研友_nxw2xL完成签到,获得积分10
53秒前
58秒前
muriel完成签到,获得积分10
59秒前
英俊的铭应助abcdefg采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
back you up应助科研通管家采纳,获得30
1分钟前
back you up应助科研通管家采纳,获得30
1分钟前
胖鲤鱼完成签到,获得积分10
1分钟前
ShengjuChen完成签到 ,获得积分10
1分钟前
1分钟前
abcdefg发布了新的文献求助10
1分钟前
joyce完成签到,获得积分10
1分钟前
2分钟前
Aria发布了新的文献求助10
2分钟前
义气的玉米完成签到 ,获得积分10
2分钟前
Aria完成签到,获得积分10
2分钟前
Spring完成签到,获得积分10
2分钟前
千帆完成签到 ,获得积分10
2分钟前
结实的寄柔完成签到,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
back you up应助科研通管家采纳,获得30
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
back you up应助科研通管家采纳,获得30
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
爆米花应助葛力采纳,获得10
3分钟前
雪酪芋泥球完成签到 ,获得积分10
3分钟前
阿巴完成签到 ,获得积分10
4分钟前
4分钟前
FashionBoy应助正在跳舞的猪采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228146
关于积分的说明 9778630
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003