催化作用
镍
材料科学
Atom(片上系统)
物理化学
结晶学
化学
有机化学
计算机科学
冶金
嵌入式系统
作者
Bin Yue,Liang Lin,Ying Lei,Huaming Xie,Yujun Si,Qian Yang,Xiaoqiang Liu
标识
DOI:10.1021/acsami.3c06259
摘要
Electrochemical selective two-electron oxygen reduction shows great potential for on-site electrochemical production of hydrogen peroxide (H2O2). Herein, we demonstrated the synthesis of Ni single-atom sites coordinated by three oxygen atoms and one nitrogen atom (i.e., Ni-N1O3) supported by oxidized carbon black (OCB) by pyrolyzing nickel-(pyridine-2,5-dicarboxylate) coordination complexes. Aberration-corrected scanning transmission electron microscopy (AC-STEM) combined with X-ray absorption spectroscopy (XAS) proves the presence of atomically dispersed Ni atoms attached on OCB (labeled as Ni-SACs@OCB), in which Ni single atoms are stabilized by a N, O-mediated coordination configuration. This Ni-SACs@OCB catalyst shows high H2O2 selectivity (95%) in a range of 0.2–0.7 V undergoing a two-electron oxygen reduction process, with a kinetic current density of 2.8 mA cm–2 and a mass activity of 24 A gcat.–1 at 0.65 V (vs RHE). In practice, H-cells with Ni-SACs@OCB as catalysts displayed a high H2O2 production rate of 98.5 mmol gcat.–1 h–1 with negligible current loss during testing, suggesting the high H2O2 generation efficiency and robust stability. DFT theoretical calculations revealed that Ni single-atom sites coordinated by O, N coordination exhibit advantages in oxygen adsorption and increased reactivity toward the intermediate species, *OOH, which is beneficial to high selectivity for H2O2 production. This work provides a novel N, O-mediated four-coordinate nickel single-atom catalyst as a promising candidate for practical decentralized production of H2O2.
科研通智能强力驱动
Strongly Powered by AbleSci AI