Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography

医学 骨质疏松症 射线照相术 脊柱(分子生物学) 断裂(地质) 口腔正畸科 放射科 材料科学 病理 生物信息学 生物 复合材料
作者
Namki Hong,Sang Wouk Cho,Sung Jae Shin,Seunghyun Lee,Seol A Jang,Seunghyun Roh,Young Han Lee,Yumie Rhee,Steven R. Cummings,Hwiyoung Kim,Kyoung Min Kim
出处
期刊:Journal of Bone and Mineral Research [Wiley]
卷期号:38 (6): 887-895 被引量:25
标识
DOI:10.1002/jbmr.4814
摘要

ABSTRACT Osteoporosis and vertebral fractures (VFs) remain underdiagnosed. The addition of deep learning methods to lateral spine radiography (a simple, widely available, low-cost test) can potentially solve this problem. In this study, we develop deep learning scores to detect osteoporosis and VF based on lateral spine radiography and investigate whether their use can improve referral of high-risk individuals to bone-density testing. The derivation cohort consisted of patients aged 50 years or older who underwent lateral spine radiography in Severance Hospital, Korea, from January 2007 to December 2018, providing a total of 26,299 lateral spine plain X-rays for 9276 patients (VF prevalence, 18.6%; osteoporosis prevalence, 40.3%). Two individual deep convolutional neural network scores to detect prevalent VF (VERTE-X pVF score) and osteoporosis (VERTE-X osteo score) were tested on an internal test set (20% hold-out set) and external test set (another hospital cohort [Yongin], 395 patients). VERTE-X pVF, osteo scores, and clinical models to detect prevalent VF or osteoporosis were compared in terms of the areas under the receiver-operating-characteristics curves (AUROCs). Net reclassification improvement (NRI) was calculated when using deep-learning scores to supplement clinical indications for classification of high-risk individuals to dual-energy X-ray absorptiometry (DXA) testing. VERTE-X pVF and osteo scores outperformed clinical models in both the internal (AUROC: VF, 0.93 versus 0.78; osteoporosis, 0.85 versus 0.79) and external (VF, 0.92 versus 0.79; osteoporosis, 0.83 versus 0.65; p < 0.01 for all) test sets. VERTE-X pVF and osteo scores improved the reclassification of individuals with osteoporosis to the DXA testing group when applied together with the clinical indications for DXA testing in both the internal (NRI 0.10) and external (NRI 0.14, p < 0.001 for all) test sets. The proposed method could detect prevalent VFs and osteoporosis, and it improved referral of individuals at high risk of fracture to DXA testing more than clinical indications alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼谷冬发布了新的文献求助10
刚刚
1秒前
1秒前
Jim发布了新的文献求助10
1秒前
Founder完成签到,获得积分10
2秒前
点击更换昵称给点击更换昵称的求助进行了留言
3秒前
吃好喝好睡饱完成签到,获得积分10
4秒前
zyy发布了新的文献求助10
6秒前
7秒前
达夫斯基完成签到,获得积分10
8秒前
花菜炒肉发布了新的文献求助10
8秒前
桐桐应助青青采纳,获得10
8秒前
阳pipi应助热心市民小红花采纳,获得10
9秒前
乐观帅哥完成签到,获得积分10
11秒前
Founder发布了新的文献求助30
13秒前
太空工程师完成签到,获得积分10
13秒前
13秒前
Orange应助n22JDb采纳,获得10
16秒前
lfl发布了新的文献求助10
16秒前
16秒前
Airy完成签到,获得积分10
17秒前
Orange应助hwq采纳,获得10
17秒前
粱忆寒发布了新的文献求助10
20秒前
陈博士完成签到,获得积分10
20秒前
20秒前
vincent完成签到 ,获得积分10
21秒前
冉亦完成签到,获得积分10
24秒前
24秒前
lfl完成签到,获得积分10
24秒前
24秒前
cao完成签到,获得积分10
25秒前
不周发布了新的文献求助10
25秒前
26秒前
粱忆寒完成签到,获得积分20
27秒前
29秒前
29秒前
liu完成签到,获得积分10
29秒前
n22JDb发布了新的文献求助10
29秒前
lc完成签到,获得积分20
30秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304