电解质
快离子导体
锂(药物)
阳极
电池(电)
材料科学
储能
化学工程
离子电导率
锂电池
化学
离子键合
离子
电极
有机化学
物理化学
功率(物理)
内分泌学
工程类
物理
医学
量子力学
作者
Laidong Zhou,Nicolò Minafra,Wolfgang G. Zeier,Linda F. Nazar
标识
DOI:10.1021/acs.accounts.0c00874
摘要
ConspectusAs the world transitions away from fossil energy to green and renewable energy, electrochemical energy storage increasingly becomes a vital component of the mix to conduct this transition. The central goal in developing next-generation batteries is to maximize the gravimetric and volumetric energy density and battery cycle life and improve safety. All solid-state batteries using a solid electrolyte and a lithium metal anode represent one of the most promising technologies that can achieve this goal. Highly conductive solid electrolytes (>10 mS·cm–1) are the key component to remove the safety concerns inherent with flammable organic liquid electrolytes and achieve high energy density by enabling high active material loading. Considering a range of inorganic solid electrolytes that have been developed to date, sulfide solid electrolytes exhibit the highest ionic conductivities, which even surpass those of conventional organic liquid electrolytes. Argyrodite-structured sulfide solid electrolytes are among the most promising materials in this class and are currently the dominantly used solid electrolytes for all-solid-state battery fabrication. Argyrodite solid electrolytes are particularly appealing because of their ultrahigh Li-ion conductivity, quasi-stable solid–electrolyte interphase (SEI) formed with Li metal, and ability to be prepared via scalable solution-assisted synthesis approaches. These factors are all vital for commercial applications.In this Account, we afford an overview of our recent development of several argyrodite superionic conductors, including Li6.6Si0.6Sb0.5S5I (24 mS·cm–1), Li6.6Ge0.6P0.4S5I (18 mS·cm–1), and Li5.5PS4.5Cl1.5 (12 mS·cm–1), and a comprehensive understanding of the origin of the underlying high conductivity, namely, sulfide/halide anion site disorder and Li cation site disorder. A high degree of sulfide/halide anion site disorder (changes in anion distribution) modifies the anionic charge, which in turn strongly influences the lithium distribution. A more inhomogeneous charge distribution in anion-disordered systems generates a spatially diffuse and delocalized lithium density, resulting in faster ionic transport. Lithium cation site disorder generated by increasing Li carrier concentration through aliovalent substitution creates high-energy interstitial sites for Li ion diffusion, which activate concerted ion migration and flatten the energy landscape for Li ion diffusion. This enables high conductivity in Li-rich argyrodite superionic conductors. These concepts are also expected to promote the design of rational new solid electrolytes and fundamental understanding of the structure–ion transport relationships in inorganic ionic conductors.Collectively, a comprehensive and deep understanding of the interphase formation between argyrodite solid electrolytes and cathode active materials/Li metal and the failure mechanism of all-solid-state batteries with argyrodite solid electrolytes will lead to the bottom-up engineering of the cathode/anode-solid electrolyte interfaces, which will accelerate the development of safe, high-energy-density all-solid-state lithium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI