Role of twin boundary position on the yield strength of Cu nanopillars

复合材料 极限抗拉强度 各向异性 成核 晶界 纳米结构 产量(工程) 打滑(空气动力学)
作者
G. Sainath,P. Rohith,A. Nagesha
出处
期刊:Computational Materials Science [Elsevier]
卷期号:197: 110564-110564 被引量:2
标识
DOI:10.1016/j.commatsci.2021.110564
摘要

It is well known that the twin boundary (TB) spacing plays an important role in controlling the strength of twinned metallic nanopillars. One of the reasons attributed to this strengthening behaviour is the force exerted by the TBs on dislocations. Since the TBs exert repulsive force on dislocations and the plasticity in nanopillars is surface controlled, it is interesting to know whether the TB position from the nanowire surface has any effect on the strength of twinned nanopillars. Using atomistic simulations, here we show that the TB position significantly influences the strength of twinned nanopillars. Atomistic simulations have been performed on nanopillar containing one and two TBs and their position is varied within nanopillar from the center to the surface. The results indicate that in nanopillar containing a single TB, the strength is maximum when the TB is located at the center of the nanopillar and it decreases as the TB is shifted towards the nanopillar surface. On the other hand in nanopillar containing two TBs, the maximum strength is observed when the twin boundaries are placed at distance of one fourth or one fifth the pillar size from the surfaces and it decreases when TBs are moved on either side. The present study demonstrates that the mechanical properties of the twinned nanopillars can be controlled by carefully tailoring the position of the TBs within the nanopillars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白牛牛完成签到 ,获得积分10
1秒前
大力水手发布了新的文献求助20
1秒前
xiamu完成签到,获得积分10
1秒前
bigzz完成签到,获得积分10
2秒前
ifbeer完成签到,获得积分10
3秒前
搜集达人应助炸鸡汉堡采纳,获得10
5秒前
YichaoWang完成签到,获得积分20
5秒前
方悦发布了新的文献求助20
7秒前
斯文败类应助jacob采纳,获得10
7秒前
9秒前
bigzz发布了新的文献求助10
11秒前
懦弱的乐蕊完成签到 ,获得积分10
12秒前
华仔应助Shit采纳,获得20
12秒前
12秒前
不配.应助高大大雁采纳,获得10
13秒前
14秒前
17秒前
wanci应助jacob采纳,获得10
18秒前
公冶君浩完成签到,获得积分10
18秒前
尤寄风完成签到,获得积分10
19秒前
mmol发布了新的文献求助10
20秒前
SPQR完成签到,获得积分10
21秒前
21秒前
坚强三德完成签到 ,获得积分10
21秒前
shade66666发布了新的文献求助10
21秒前
22秒前
fight完成签到,获得积分10
22秒前
dreamon发布了新的文献求助10
23秒前
李健的小迷弟应助豆子采纳,获得10
25秒前
25秒前
cmy完成签到,获得积分10
25秒前
Leon Lai完成签到,获得积分10
27秒前
bdueggg发布了新的文献求助10
28秒前
纪间发布了新的文献求助10
28秒前
mm完成签到,获得积分10
28秒前
桐桐应助shade66666采纳,获得10
29秒前
不配.应助忧虑的访梦采纳,获得20
30秒前
31秒前
19完成签到,获得积分10
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786078
关于积分的说明 7774957
捐赠科研通 2441899
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825