组合数学
数学
劈形算符
欧米茄
有界函数
物理
数学分析
量子力学
作者
Zhou Lu,Handong Wang,Chunhua Jin
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:27 (4): 2065-2065
被引量:3
标识
DOI:10.3934/dcdsb.2021122
摘要
<p style='text-indent:20px;'>In this paper, we consider the following chemotaxis-consumption model with porous medium diffusion and singular sensitivity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \left\{ \begin{aligned} &u_{t} = \Delta u^{m}-\chi \mathrm{div}(\frac{u}{v}\nabla v)+\mu u(1-u), \\ &v_{t} = \Delta v-u^{r}v, \end{aligned}\right. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in a bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb R^N $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M2">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula>) with zero-flux boundary conditions. It is shown that if <inline-formula><tex-math id="M3">\begin{document}$ r<\frac{4}{N+2} $\end{document}</tex-math></inline-formula>, for arbitrary case of fast diffusion (<inline-formula><tex-math id="M4">\begin{document}$ m\le 1 $\end{document}</tex-math></inline-formula>) and slow diffusion <inline-formula><tex-math id="M5">\begin{document}$ (m>1) $\end{document}</tex-math></inline-formula>, this problem admits a locally bounded global weak solution. It is worth mentioning that there are no smallness restrictions on the initial datum and chemotactic coefficient.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI