A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images

肺炎 医学 病毒性肺炎 2019年冠状病毒病(COVID-19) 放射科 接收机工作特性 疾病 内科学 传染病(医学专业)
作者
Guangyu Wang,Xiaohong Liu,Jun Shen,Chengdi Wang,Zhihuan Li,Linsen Ye,Xingwang Wu,Ting Chen,Kai Wang,Xuan Zhang,Zhongguo Zhou,Jian Yang,Ye Sang,Ruiyun Deng,Wenhua Liang,Tao Yu,Ming Gao,Jin Wang,Zehong Yang,H. Cai,Guangming Lu,Lingyan Zhang,Lei Yang,W. Xu,Winston Wang,Andrea Olvera,Ian Ziyar,Charlotte Zhang,Oulan Li,Weihua Liao,Jun Liu,Wen Chen,Wei Chen,Jichan Shi,Lianghong Zheng,Longjiang Zhang,Zhihan Yan,Xiaoguang Zou,Gigin Lin,Guiqun Cao,Laurance L Lau,Manmei Long,Yong Liang,Michael Roberts,Evis Sala,Carola‐Bibiane Schönlieb,Manson Fok,Johnson Y. N. Lau,Tao Xu,Jianxing He,Kang Zhang,Weimin Liu,Tianxin Lin
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 509-521 被引量:96
标识
DOI:10.1038/s41551-021-00704-1
摘要

Common lung diseases are first diagnosed using chest X-rays. Here, we show that a fully automated deep-learning pipeline for the standardization of chest X-ray images, for the visualization of lesions and for disease diagnosis can identify viral pneumonia caused by coronavirus disease 2019 (COVID-19) and assess its severity, and can also discriminate between viral pneumonia caused by COVID-19 and other types of pneumonia. The deep-learning system was developed using a heterogeneous multicentre dataset of 145,202 images, and tested retrospectively and prospectively with thousands of additional images across four patient cohorts and multiple countries. The system generalized across settings, discriminating between viral pneumonia, other types of pneumonia and the absence of disease with areas under the receiver operating characteristic curve (AUCs) of 0.94-0.98; between severe and non-severe COVID-19 with an AUC of 0.87; and between COVID-19 pneumonia and other viral or non-viral pneumonia with AUCs of 0.87-0.97. In an independent set of 440 chest X-rays, the system performed comparably to senior radiologists and improved the performance of junior radiologists. Automated deep-learning systems for the assessment of pneumonia could facilitate early intervention and provide support for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
高兴的易形完成签到 ,获得积分10
刚刚
橙以澄发布了新的文献求助10
刚刚
1秒前
科目三应助悦耳娩采纳,获得10
1秒前
qiu发布了新的文献求助10
2秒前
Jianan_Yang完成签到,获得积分10
2秒前
2秒前
慕青应助XUYAN采纳,获得10
2秒前
2秒前
zkw发布了新的文献求助10
2秒前
帅比4发布了新的文献求助10
3秒前
3秒前
3秒前
江江江完成签到,获得积分10
3秒前
fengyi2999发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
橙子发布了新的文献求助10
4秒前
wop111发布了新的文献求助10
4秒前
Yianyan完成签到,获得积分20
4秒前
5秒前
5秒前
SciGPT应助欢喜板凳采纳,获得10
5秒前
5秒前
阿会完成签到,获得积分10
6秒前
小壳儿完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Min完成签到,获得积分10
7秒前
caojj完成签到,获得积分10
7秒前
7秒前
ll完成签到,获得积分10
7秒前
lelouch发布了新的文献求助10
7秒前
丘比特应助愤怒的幻巧采纳,获得10
8秒前
大个应助猪猪hero采纳,获得10
8秒前
东堂发布了新的文献求助10
8秒前
威武君浩关注了科研通微信公众号
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410541
求助须知:如何正确求助?哪些是违规求助? 4527950
关于积分的说明 14113813
捐赠科研通 4442609
什么是DOI,文献DOI怎么找? 2437990
邀请新用户注册赠送积分活动 1430032
关于科研通互助平台的介绍 1407965