False Positive Suppression in Cervical Cell Screening via Attention-Guided Semi-supervised Learning

计算机科学 人工智能 宫颈癌 模式识别(心理学) 机器学习
作者
Xiaping Du,Jiayu Huo,Yuanfang Qiao,Qian Wang,Lichi Zhang
出处
期刊:Lecture Notes in Computer Science
标识
DOI:10.1007/978-3-030-87602-9_9
摘要

Cervical cancer is one of the primary factors that endanger women’s health, and Thinprep cytologic test (TCT) is the common testing tool for the early diagnosis of cervical cancer. However, it is tedious and time-consuming for pathologists to assess and find abnormal cells in many TCT samples. Thus, automatic detection of abnormal cervical cells is highly demanded. Nevertheless, false positive cells are inevitable after automatic detection. It is still a burden for the pathologist if the false positive rate is high. To this end, here we propose a semi-supervised cervical cell diagnosis method that can significantly reduce the false positive rate. First, we incorporate a detection network to localize the suspicious abnormal cervical cells. Then, we design a semi-supervised classification network to identify whether the cervical cells are truly abnormal or not. To boost the performance of the semi-supervised classification network, and make full use of the localizing information derived from the detection network, we use the predicted bounding boxes of the detection network as an additional constraint for the attention masks from the classification network. Besides, we also develop a novel consistency constraint between the teacher and student models to guarantee the robustness of the network. Our experimental results show that our network can achieve satisfactory classification accuracy using only a limited number of labeled cells, and also greatly reduce the false positive rate in cervical cell detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小小科研发布了新的文献求助10
2秒前
haha发布了新的文献求助10
2秒前
3秒前
YAO发布了新的文献求助10
3秒前
3秒前
苏杰完成签到,获得积分10
3秒前
3秒前
lxd应助美满的金连采纳,获得10
3秒前
坤坤完成签到,获得积分20
5秒前
科研通AI5应助尼妮采纳,获得10
5秒前
5秒前
科研通AI2S应助柳七采纳,获得10
5秒前
6秒前
wanci应助飘逸星影采纳,获得10
8秒前
小二郎应助bailubailing采纳,获得10
8秒前
飞猪发布了新的文献求助10
9秒前
9秒前
9秒前
dyp发布了新的文献求助10
9秒前
啦啦啦关注了科研通微信公众号
9秒前
9秒前
Michael发布了新的文献求助10
9秒前
10秒前
机灵鼠标完成签到,获得积分20
11秒前
所所应助zcc采纳,获得10
11秒前
12秒前
乔乔发布了新的文献求助10
12秒前
YoluRaven完成签到,获得积分10
13秒前
13秒前
Hello应助称心剑鬼采纳,获得10
13秒前
科研通AI2S应助Lachs采纳,获得10
13秒前
SciGPT应助张云雷的大闸蟹采纳,获得10
14秒前
14秒前
hjx完成签到,获得积分10
14秒前
ZYT发布了新的文献求助10
15秒前
16秒前
cxh发布了新的文献求助10
16秒前
小鲸发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559395
求助须知:如何正确求助?哪些是违规求助? 3134035
关于积分的说明 9405099
捐赠科研通 2834084
什么是DOI,文献DOI怎么找? 1557841
邀请新用户注册赠送积分活动 727741
科研通“疑难数据库(出版商)”最低求助积分说明 716399