An automatic Computer-Aided Diagnosis system based on the Multimodal fusion of Breast Cancer (MF-CAD)

模态(人机交互) 计算机科学 计算机辅助设计 人工智能 计算机辅助诊断 乳腺癌 乳腺摄影术 支持向量机 模式识别(心理学) 局部二进制模式 模式 人工神经网络 特征(语言学) 磁共振成像 特征提取 癌症 医学 放射科 图像(数学) 工程类 工程制图 社会学 哲学 内科学 直方图 语言学 社会科学
作者
Raouia Mokni,Norhène Gargouri,Alima Damak,Dorra Sellami,W. Feki,Z. Mnif
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102914-102914 被引量:14
标识
DOI:10.1016/j.bspc.2021.102914
摘要

The risk of death incurred by breast cancer is rising exponentially, especially among women. The early breast cancer diagnosis before it metastasizes helps medical staff controlling this disease, which decreases the risk of death. This made early breast cancer detection a crucial problem. Different imaging modalities offer complementary information concerning the same lesion helps to increase the performance of thcy fusing several modalities. This paper proposes a computerized features classification of breast cancer lesions through both the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) and Digital Mammographic images (MGs). This study aims to investigate a Multimodal Fusion-based Computer-Aided Diagnosis (CAD) system, called MF-CAD, based on multivariate analysis of different modalities, for breast cancer mass detection. In this paper, firstly a new local feature descriptor is proposed in feature extraction, namely, the Gradient Local Information Pattern (GLIP), where we consider the gradient magnitude and orientation as well as the local differences as local binary features for DCE-MRI (or MGs) modality. Secondly, the fusion scheme is conducted using the Canonical Correlation Analysis (CCA) to highlight the intrinsic relation between these modalities. Finally, for comparative purposes, several selected machine learning classifiers (K-Nearest Neighbors, Support Vector Machine, Random forests, Artificial Neural Networks and Radial Basis Function Neural Network (RBFNN)) are used to distinguish between mass and No-mass breast images.Evaluation experiments of the diagnostic performances of our MF-CAD system are conducted over private datasets that contain both MG and DCE-MRI images acquired from 286 patients, which are “Breast DCE-MRI”, “Breast-MG” and “Breast Multimodal” datasets. Experimental results of the proposed MF-CAD system achieved an Area Under the ROC Curve (AUC) value of 99.10% using RBFNN classifier, while for each single modality alone, the best AUC values of 97.20% and 93.50% are obtained respectively for MG and DCE-MRI modalities using random forest classifier. A comparative study with recent existing approaches shows the competitive performances of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
范范发布了新的文献求助10
刚刚
狄孱完成签到,获得积分10
1秒前
Kenina完成签到,获得积分10
1秒前
材料人发布了新的文献求助10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得30
4秒前
小熊丢了发布了新的文献求助10
4秒前
永不言弃完成签到 ,获得积分10
4秒前
Thien应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Lars汉堡应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
Thien应助科研通管家采纳,获得10
5秒前
hannahwu完成签到,获得积分20
5秒前
orixero应助科研通管家采纳,获得10
5秒前
Thien应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
6秒前
louyu完成签到 ,获得积分10
6秒前
秋辞完成签到,获得积分10
6秒前
6秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725921
求助须知:如何正确求助?哪些是违规求助? 3271014
关于积分的说明 9969976
捐赠科研通 2986468
什么是DOI,文献DOI怎么找? 1638241
邀请新用户注册赠送积分活动 778036
科研通“疑难数据库(出版商)”最低求助积分说明 747383