An automatic Computer-Aided Diagnosis system based on the Multimodal fusion of Breast Cancer (MF-CAD)

模态(人机交互) 计算机科学 计算机辅助设计 人工智能 计算机辅助诊断 乳腺癌 乳腺摄影术 支持向量机 模式识别(心理学) 局部二进制模式 模式 人工神经网络 特征(语言学) 磁共振成像 特征提取 癌症 医学 放射科 图像(数学) 工程类 工程制图 社会学 哲学 内科学 直方图 语言学 社会科学
作者
Raouia Mokni,Norhène Gargouri,Alima Damak,Dorra Sellami,W. Feki,Z. Mnif
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:69: 102914-102914 被引量:14
标识
DOI:10.1016/j.bspc.2021.102914
摘要

The risk of death incurred by breast cancer is rising exponentially, especially among women. The early breast cancer diagnosis before it metastasizes helps medical staff controlling this disease, which decreases the risk of death. This made early breast cancer detection a crucial problem. Different imaging modalities offer complementary information concerning the same lesion helps to increase the performance of thcy fusing several modalities. This paper proposes a computerized features classification of breast cancer lesions through both the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) and Digital Mammographic images (MGs). This study aims to investigate a Multimodal Fusion-based Computer-Aided Diagnosis (CAD) system, called MF-CAD, based on multivariate analysis of different modalities, for breast cancer mass detection. In this paper, firstly a new local feature descriptor is proposed in feature extraction, namely, the Gradient Local Information Pattern (GLIP), where we consider the gradient magnitude and orientation as well as the local differences as local binary features for DCE-MRI (or MGs) modality. Secondly, the fusion scheme is conducted using the Canonical Correlation Analysis (CCA) to highlight the intrinsic relation between these modalities. Finally, for comparative purposes, several selected machine learning classifiers (K-Nearest Neighbors, Support Vector Machine, Random forests, Artificial Neural Networks and Radial Basis Function Neural Network (RBFNN)) are used to distinguish between mass and No-mass breast images.Evaluation experiments of the diagnostic performances of our MF-CAD system are conducted over private datasets that contain both MG and DCE-MRI images acquired from 286 patients, which are “Breast DCE-MRI”, “Breast-MG” and “Breast Multimodal” datasets. Experimental results of the proposed MF-CAD system achieved an Area Under the ROC Curve (AUC) value of 99.10% using RBFNN classifier, while for each single modality alone, the best AUC values of 97.20% and 93.50% are obtained respectively for MG and DCE-MRI modalities using random forest classifier. A comparative study with recent existing approaches shows the competitive performances of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小天发布了新的文献求助30
2秒前
李健应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
无餍应助科研通管家采纳,获得10
3秒前
Wait完成签到,获得积分10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
5秒前
6秒前
7秒前
zf完成签到 ,获得积分10
10秒前
miao发布了新的文献求助10
10秒前
12秒前
13秒前
FashionBoy应助锌小子采纳,获得10
13秒前
bkagyin应助s010w1ngpixy采纳,获得10
17秒前
zeng123发布了新的文献求助10
17秒前
Moria发布了新的文献求助10
17秒前
18秒前
yolo39应助jinze采纳,获得10
19秒前
贝塔发布了新的文献求助10
20秒前
不晚完成签到,获得积分10
21秒前
打打应助蔡琪采纳,获得10
22秒前
华仔应助超帅的元柏采纳,获得10
22秒前
23秒前
拉萨小医生完成签到,获得积分10
25秒前
26秒前
Vicky完成签到 ,获得积分10
27秒前
Rencal发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644