Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification

石斛 小桶 传统医学 成分 医学 活性成分 癌症 药理学 生物 基因本体论 基因 内科学 病理 生物化学 基因表达
作者
Yan Wang,Fuhao Chu,Jie Lin,Yuan Li,Nadia Johnson,Jianglan Zhang,Cong Gai,Zeqi Su,Hong-Jie Cheng,Linheng Wang,Xia Ding
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:279: 114399-114399 被引量:41
标识
DOI:10.1016/j.jep.2021.114399
摘要

Dendrobium chrysotoxum Lindl, a well-known traditional Chinese medicinal herb used in the treatment of gastric disease, is distinguished as the first of the "nine immortal grasses". Dendrobium chrysotoxum Lindl and the traditional Chinese medicine prescriptions containing Dendrobium chrysotoxum Lindl are often prescribed clinically to treat chronic gastritis and precancerous lesions of gastric cancer (PLGC), showing favorable clinical effects and medicinal value in the prevention of gastric cancer. However, the effective ingredients and pharmacological mechanisms through which Dendrobium chrysotoxum Lindl prevents and treats PLGC have not been adequately identified or interpreted.The present study aimed to evaluate the effective ingredients and pharmacological mechanisms of Dendrobium chrysotoxum Lindl in the prevention and treatment of PLGC using network pharmacology. In addition, in vitro verification was performed to evaluate the mechanism of action of Erianin, the main active ingredient in Dendrobium chrysotoxum Lindl, providing experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl in the treatment of PLGC.Using network pharmacology methods, the main ingredients in Dendrobium chrysotoxum Lindl were screened from the ETCM, BATMAN-TCM, and TCMID databases, and their potential targets were predicted using the Swiss Target Prediction platform. The targets related to PLGC were retrieved through the GeneCard database, and the targets common to the main ingredients of Dendrobium chrysotoxum Lindl and PLGC were analyzed. The protein-protein interaction (PPI) network was obtained via the STRING database and analyzed visually using Cytoscape 3.7.2. The underlying mechanisms of the common targets identified through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were analyzed using DAVID online. The "component-target-pathway" networks of Dendrobium chrysotoxum Lindl and Erianin were visually constructed by Cytoscape 3.7.2. The biological activity evaluation of Erianin's effect on PLGC was carried out using MC cell lines, the PLGC cell model established using MNNG to induce damage in normal gastric mucosal epithelial cell (GES-1). After the intervention of different concentrations of Erianin, MC cell viability was explored using the MTT assays, cell migration was determined by wound healing assays, the cell cycle and apoptosis were analyzed using flow cytometry, and the expression levels of related proteins and their phosphorylation in the HRAS-PI3K-AKT signaling pathway were detected by Western blot.The "component-target-pathway" network constructed in this study showed 37 active ingredients from Dendrobium chrysotoxum Lindl and 142 overlapping targets related to both Dendrobium chrysotoxum Lindl and PLGC. The targets were associated with a variety of cancer-related signaling pathways, including Pathways in cancer, PI3K-Akt signaling pathway, Rap1 signaling pathway, Focal adhesion, Ras signaling pathway, and MAPK signaling pathway. Notably, the network showed that Erianin, the primary active ingredient from Dendrobium chrysotoxum Lindl and the component associated with the most targets, could regulate Pathways in cancer, PI3K-AKT signaling pathway, Focal adhesion, Rap1 signaling pathway, cell cycle, and RAS signaling pathway in the treatment of PLGC. Verification through in vitro experiments found that Erianin can significantly inhibit MC cell viability, inhibit cell migration, block the cell cycle in the G2/M phase, and induce cell apoptosis in a dose-dependent manner. The results of the Western blot experiment further showed that Erianin can significantly decrease the protein expression levels of HRAS, AKT, p-AKT, MDM2, Cyclin D1, and p-Gsk3β, and increase the protein expression level of p21, which suggests that Erianin can treat PLGC by regulating the HRAS-PI3K-AKT signaling pathway.This study explained the positive characteristics of multi-component, multi-target, and multi-approach intervention with Dendrobium chrysotoxum Lindl in the treatment of PLGC. Our results suggest that Erianin may be a promising candidate in the development of prevention and treatment methods for PLGC. This study provided experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl to treat PLGC and prevent gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
152522完成签到,获得积分20
刚刚
大胆含蕾完成签到,获得积分20
1秒前
1秒前
谦让的含桃关注了科研通微信公众号
1秒前
Waris发布了新的文献求助10
2秒前
HaniRxf发布了新的文献求助10
2秒前
乐乐应助yaoyao采纳,获得10
3秒前
Fed发布了新的文献求助10
3秒前
3秒前
青塘龙仔发布了新的文献求助10
3秒前
英姑应助thomas采纳,获得10
4秒前
lalala发布了新的文献求助10
5秒前
5秒前
tty完成签到,获得积分10
5秒前
大胆含蕾发布了新的文献求助10
6秒前
7秒前
wujuan完成签到 ,获得积分10
7秒前
9秒前
辛坦夫发布了新的文献求助10
11秒前
听风随影发布了新的文献求助10
12秒前
村上种树完成签到 ,获得积分10
12秒前
13秒前
13秒前
15秒前
15秒前
16秒前
wyj发布了新的文献求助10
17秒前
17秒前
Wav完成签到,获得积分10
18秒前
18秒前
18秒前
21秒前
21秒前
21秒前
深情安青应助橙子采纳,获得70
22秒前
22秒前
lalala发布了新的文献求助10
22秒前
23秒前
等待的太阳完成签到,获得积分20
24秒前
24秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Migration and Wellbeing: Towards a More Inclusive World 900
Eric Dunning and the Sociology of Sport 850
Operative Techniques in Pediatric Orthopaedic Surgery 510
The Making of Détente: Eastern Europe and Western Europe in the Cold War, 1965-75 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2912328
求助须知:如何正确求助?哪些是违规求助? 2547576
关于积分的说明 6895313
捐赠科研通 2212317
什么是DOI,文献DOI怎么找? 1175583
版权声明 588160
科研通“疑难数据库(出版商)”最低求助积分说明 575791