CardioXNet: A Novel Lightweight Deep Learning Framework for Cardiovascular Disease Classification Using Heart Sound Recordings

计算机科学 特征学习 深度学习 人工智能 残余物 模式识别(心理学) 特征提取 卷积神经网络 心音图 语音识别 算法
作者
Samiul Based Shuvo,Shams Nafisa Ali,Soham Irtiza Swapnil,Mabrook Al-Rakhami,Abdu Gumaei
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 36955-36967 被引量:83
标识
DOI:10.1109/access.2021.3063129
摘要

The alarmingly high mortality rate and increasing global prevalence of cardiovascular diseases (CVDs) signify the crucial need for early detection schemes. Phonocardiogram (PCG) signals have been historically applied in this domain owing to its simplicity and cost-effectiveness. In this article, we propose CardioXNet, a novel lightweight end-to-end CRNN architecture for automatic detection of five classes of cardiac auscultation namely normal, aortic stenosis, mitral stenosis, mitral regurgitation and mitral valve prolapse using raw PCG signal. The process has been automated by the involvement of two learning phases namely, representation learning and sequence residual learning. Three parallel CNN pathways have been implemented in the representation learning phase to learn the coarse and fine-grained features from the PCG and to explore the salient features from variable receptive fields involving 2D-CNN based squeeze-expansion. Thus, in the representation learning phase, the network extracts efficient time-invariant features and converges with great rapidity. In the sequential residual learning phase, because of the bidirectional-LSTMs and the skip connection, the network can proficiently extract temporal features without performing any feature extraction on the signal. The obtained results demonstrate that the proposed end-to-end architecture yields outstanding performance in all the evaluation metrics compared to the previous state-of-the-art methods with up to 99.60% accuracy, 99.56% precision, 99.52% recall and 99.68% F1- score on an average while being computationally comparable. This model outperforms any previous works using the same database by a considerable margin. Moreover, the proposed model was tested on PhysioNet/CinC 2016 challenge dataset achieving an accuracy of 86.57%. Finally the model was evaluated on a merged dataset of Github PCG dataset and PhysioNet dataset achieving excellent accuracy of 88.09%. The high accuracy metrics on both primary and secondary dataset combined with a significantly low number of parameters and end-to-end prediction approach makes the proposed network especially suitable for point of care CVD screening in low resource setups using memory constraint mobile devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUJC完成签到,获得积分10
1秒前
安笙发布了新的文献求助10
2秒前
坚强的访蕊完成签到,获得积分10
3秒前
执着烧鹅完成签到,获得积分10
5秒前
7秒前
11秒前
11秒前
扎根发布了新的文献求助10
12秒前
杨俊锋完成签到,获得积分20
12秒前
科研通AI5应助科研虫采纳,获得10
13秒前
快乐吗猪完成签到 ,获得积分10
14秒前
yjf完成签到,获得积分10
14秒前
14秒前
15秒前
深情不弱完成签到 ,获得积分10
15秒前
17秒前
香蕉觅云应助hhhhh采纳,获得10
17秒前
18秒前
小酥饼完成签到,获得积分10
18秒前
20秒前
刚刚好完成签到,获得积分10
20秒前
木子应助表演采纳,获得50
21秒前
dll完成签到 ,获得积分10
21秒前
炙热冰夏发布了新的文献求助10
22秒前
纯情的远山完成签到,获得积分10
24秒前
zhangyidian应助大气绮露采纳,获得10
26秒前
28秒前
28秒前
小马甲应助萤火采纳,获得10
31秒前
dyy发布了新的文献求助10
32秒前
研友_gnv61n完成签到,获得积分0
32秒前
xcf6653发布了新的文献求助10
32秒前
hhhhh发布了新的文献求助10
33秒前
炙热冰夏完成签到,获得积分10
37秒前
长青关注了科研通微信公众号
38秒前
李爱国应助Zx采纳,获得10
39秒前
思源应助慕哈哈哈采纳,获得10
40秒前
40秒前
会厌完成签到 ,获得积分10
40秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174