Impacts of point cloud density reductions on extracting road geometric features from mobile LiDAR data

点云 激光雷达 分割 遥感 测距 点(几何) 密度估算 灵敏度(控制系统) 计算机科学 环境科学 激光扫描 统计 地理 数学 大地测量学 人工智能 激光器 几何学 工程类 光学 物理 估计员 电子工程
作者
Suliman Gargoum,Karim El-Basyouny
出处
期刊:Canadian Journal of Civil Engineering [Canadian Science Publishing]
卷期号:49 (6): 910-924
标识
DOI:10.1139/cjce-2020-0193
摘要

The variation in point cloud density is driven by many different factors. This variation is expected to affect the quality of the information extracted from the point clouds, however, the extent to which these variations impact the ability to accurately extract and assess geometric features of highways from point cloud data are unknown. This paper investigates the impacts of point density reduction on the extraction and assessment of four critical geometric features. The density of light detection and ranging (LiDAR) data was first reduced and the different features were extracted at varying levels of point density and on a selection of different highway segments in Alberta, Canada. The information obtained at lower point density was then compared to what was obtained at 100% point density. It was found that clearance assessments and sight distance assessments had low sensitivity to reductions in point density (i.e., reducing the point density to as low as 10% of the original data (30 ppm 2 on the pavement surface) yielded results comparable to what was obtained at 100% density (300 ppm 2 ) In contrast, for cross section slope estimation and curve attribute estimation higher sensitivity to point density was observed. These findings are critical for transportation agencies considering the adoption of LiDAR technology to manage elements of their infrastructure and for researchers developing data processing tools and algorithms for the semantic segmentation of transportation features from remotely sensed point clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahengo完成签到,获得积分10
1秒前
科研通AI6应助hd采纳,获得10
2秒前
haku发布了新的文献求助10
2秒前
风清扬发布了新的文献求助10
3秒前
科研通AI6应助xiaoying采纳,获得30
3秒前
赘婿应助和谐耳机采纳,获得10
4秒前
4秒前
5秒前
张浩威发布了新的文献求助10
5秒前
JamesPei应助南音采纳,获得10
6秒前
7秒前
7秒前
9秒前
威武忆山发布了新的文献求助150
9秒前
富贵发布了新的文献求助10
10秒前
10秒前
howay发布了新的文献求助10
12秒前
柠檬发布了新的文献求助10
13秒前
14秒前
粗心的大门完成签到,获得积分10
14秒前
陈祥宇发布了新的文献求助10
16秒前
pingli完成签到,获得积分10
16秒前
17秒前
17秒前
脑洞疼应助京阿尼采纳,获得10
17秒前
科研通AI6应助酷酷飞机采纳,获得10
18秒前
小马甲应助良将何在采纳,获得10
18秒前
xxxx完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
风清扬发布了新的文献求助10
20秒前
Fairy完成签到,获得积分10
22秒前
第二菜完成签到,获得积分10
22秒前
浮游应助Yuan采纳,获得10
22秒前
xxxx发布了新的文献求助30
22秒前
23秒前
23秒前
陈1发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462178
求助须知:如何正确求助?哪些是违规求助? 4566967
关于积分的说明 14308312
捐赠科研通 4492826
什么是DOI,文献DOI怎么找? 2461282
邀请新用户注册赠送积分活动 1450295
关于科研通互助平台的介绍 1425788