The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

数学优化 数学 整数规划 有界函数 整数(计算机科学) 力矩(物理) 放松(心理学) 随机算法 线性规划 最优化问题 稳健优化 线性规划松弛 计算机科学 算法 心理学 数学分析 社会心理学 物理 经典力学 程序设计语言
作者
Erick Delage,Ahmed Saif
出处
期刊:Informs Journal on Computing 卷期号:34 (1): 333-353 被引量:14
标识
DOI:10.1287/ijoc.2020.1042
摘要

Randomized decision making refers to the process of making decisions randomly according to the outcome of an independent randomization device, such as a dice roll or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, in which deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has recently been shown that using a randomized, rather than a deterministic, strategy in nonconvex distributionally robust optimization (DRO) problems can lead to improvements in their objective values. It is still unknown, though, what is the magnitude of improvement that can be attained through randomization or how to numerically find the optimal randomized strategy. In this paper, we study the value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound is tight. We then develop algorithmic procedures, based on column generation, for solving both single- and two-stage linear DRO problems with randomization that can be used with both moment-based and Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated facility location problem and report numerical results that show the quality of our bounds, the computational efficiency of the proposed solution method, and the magnitude of performance improvement achieved by randomized decisions. Summary of Contribution: In this paper, we present both theoretical results and algorithmic tools to identify optimal randomized strategies for discrete distributionally robust optimization (DRO) problems and evaluate the performance improvements that can be achieved when using them rather than classical deterministic strategies. On the theory side, we provide improvement bounds based on continuous relaxation and identify the conditions under which these bound are tight. On the algorithmic side, we propose a finitely convergent, two-layer, column-generation algorithm that iterates between identifying feasible solutions and finding extreme realizations of the uncertain parameter. The proposed algorithm was implemented to solve distributionally robust stochastic versions of three classical optimization problems and extensive numerical results are reported. The paper extends a previous, purely theoretical work of the first author on the idea of randomized strategies in nonconvex DRO problems by providing useful bounds and algorithms to solve this kind of problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗松应助零零零零采纳,获得10
1秒前
iNk应助零零零零采纳,获得20
1秒前
椰丝yes发布了新的文献求助10
2秒前
3秒前
z掌握一下完成签到,获得积分10
3秒前
likke发布了新的文献求助10
4秒前
阳光怀亦完成签到,获得积分10
4秒前
迷路小丸子完成签到,获得积分10
4秒前
peng发布了新的文献求助10
5秒前
小马甲应助YR采纳,获得10
5秒前
z掌握一下发布了新的文献求助10
6秒前
失眠柚子完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
岩下松风完成签到,获得积分10
8秒前
9秒前
时光不旧只是满尘灰完成签到 ,获得积分10
10秒前
Hello应助peng采纳,获得10
11秒前
11秒前
椰丝yes完成签到,获得积分10
11秒前
鱼囧发布了新的文献求助10
11秒前
哆啦十七应助value采纳,获得10
11秒前
12秒前
风181013发布了新的文献求助10
13秒前
热心语山发布了新的文献求助10
16秒前
学术小白发布了新的文献求助30
16秒前
没有答案发布了新的文献求助10
17秒前
18秒前
隐形曼青应助玲也采纳,获得10
18秒前
18秒前
华仔应助kk采纳,获得10
18秒前
18秒前
杨拿铁完成签到,获得积分10
19秒前
李李李关注了科研通微信公众号
22秒前
JamesPei应助CL采纳,获得10
22秒前
jackmilton发布了新的文献求助10
23秒前
24秒前
研友_rLmNXn发布了新的文献求助10
24秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342724
求助须知:如何正确求助?哪些是违规求助? 4478521
关于积分的说明 13939809
捐赠科研通 4375215
什么是DOI,文献DOI怎么找? 2404022
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368794