The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

数学优化 数学 整数规划 有界函数 整数(计算机科学) 力矩(物理) 放松(心理学) 随机算法 线性规划 最优化问题 稳健优化 线性规划松弛 计算机科学 算法 经典力学 社会心理学 物理 数学分析 心理学 程序设计语言
作者
Erick Delage,Ahmed Saif
出处
期刊:Informs Journal on Computing 卷期号:34 (1): 333-353 被引量:14
标识
DOI:10.1287/ijoc.2020.1042
摘要

Randomized decision making refers to the process of making decisions randomly according to the outcome of an independent randomization device, such as a dice roll or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, in which deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has recently been shown that using a randomized, rather than a deterministic, strategy in nonconvex distributionally robust optimization (DRO) problems can lead to improvements in their objective values. It is still unknown, though, what is the magnitude of improvement that can be attained through randomization or how to numerically find the optimal randomized strategy. In this paper, we study the value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound is tight. We then develop algorithmic procedures, based on column generation, for solving both single- and two-stage linear DRO problems with randomization that can be used with both moment-based and Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated facility location problem and report numerical results that show the quality of our bounds, the computational efficiency of the proposed solution method, and the magnitude of performance improvement achieved by randomized decisions. Summary of Contribution: In this paper, we present both theoretical results and algorithmic tools to identify optimal randomized strategies for discrete distributionally robust optimization (DRO) problems and evaluate the performance improvements that can be achieved when using them rather than classical deterministic strategies. On the theory side, we provide improvement bounds based on continuous relaxation and identify the conditions under which these bound are tight. On the algorithmic side, we propose a finitely convergent, two-layer, column-generation algorithm that iterates between identifying feasible solutions and finding extreme realizations of the uncertain parameter. The proposed algorithm was implemented to solve distributionally robust stochastic versions of three classical optimization problems and extensive numerical results are reported. The paper extends a previous, purely theoretical work of the first author on the idea of randomized strategies in nonconvex DRO problems by providing useful bounds and algorithms to solve this kind of problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秭归子归完成签到 ,获得积分10
1秒前
wangyanwxy发布了新的文献求助10
1秒前
CipherSage应助阿珩采纳,获得10
1秒前
日月星陈发布了新的文献求助10
1秒前
111111完成签到,获得积分10
2秒前
鸿宇发布了新的文献求助10
3秒前
3秒前
4秒前
hzxy_lyt应助咻咻采纳,获得10
4秒前
4秒前
5秒前
Orange应助马婷采纳,获得10
5秒前
领导范儿应助有机分子笼采纳,获得10
5秒前
ding应助彩色的向珊采纳,获得10
5秒前
colourz完成签到 ,获得积分10
6秒前
zzznznnn完成签到,获得积分10
7秒前
skycool发布了新的文献求助20
7秒前
7秒前
欢呼的鲂完成签到,获得积分10
8秒前
zxw完成签到,获得积分10
8秒前
9秒前
田様应助鸿宇采纳,获得10
9秒前
有机去鼠发布了新的文献求助10
9秒前
深情安青应助linlin采纳,获得10
10秒前
小二郎应助日月星陈采纳,获得10
10秒前
10秒前
jjffsong发布了新的文献求助30
12秒前
guantlv发布了新的文献求助10
13秒前
王弘化应助神勇的忆灵采纳,获得10
14秒前
15秒前
糊涂的若蕊完成签到,获得积分10
15秒前
15秒前
刻苦的元风完成签到 ,获得积分10
18秒前
大个应助didi采纳,获得10
18秒前
Snoopy_Swan完成签到,获得积分10
19秒前
时米米米发布了新的文献求助10
19秒前
20秒前
可爱的函函应助一一采纳,获得10
20秒前
勤劳涵山发布了新的文献求助10
21秒前
传奇3应助ThoseRangers0624采纳,获得10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312373
求助须知:如何正确求助?哪些是违规求助? 2945014
关于积分的说明 8522631
捐赠科研通 2620796
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187