The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

数学优化 数学 整数规划 有界函数 整数(计算机科学) 力矩(物理) 放松(心理学) 随机算法 线性规划 最优化问题 稳健优化 线性规划松弛 计算机科学 算法 经典力学 社会心理学 物理 数学分析 心理学 程序设计语言
作者
Erick Delage,Ahmed Saif
出处
期刊:Informs Journal on Computing 卷期号:34 (1): 333-353 被引量:14
标识
DOI:10.1287/ijoc.2020.1042
摘要

Randomized decision making refers to the process of making decisions randomly according to the outcome of an independent randomization device, such as a dice roll or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, in which deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has recently been shown that using a randomized, rather than a deterministic, strategy in nonconvex distributionally robust optimization (DRO) problems can lead to improvements in their objective values. It is still unknown, though, what is the magnitude of improvement that can be attained through randomization or how to numerically find the optimal randomized strategy. In this paper, we study the value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound is tight. We then develop algorithmic procedures, based on column generation, for solving both single- and two-stage linear DRO problems with randomization that can be used with both moment-based and Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated facility location problem and report numerical results that show the quality of our bounds, the computational efficiency of the proposed solution method, and the magnitude of performance improvement achieved by randomized decisions. Summary of Contribution: In this paper, we present both theoretical results and algorithmic tools to identify optimal randomized strategies for discrete distributionally robust optimization (DRO) problems and evaluate the performance improvements that can be achieved when using them rather than classical deterministic strategies. On the theory side, we provide improvement bounds based on continuous relaxation and identify the conditions under which these bound are tight. On the algorithmic side, we propose a finitely convergent, two-layer, column-generation algorithm that iterates between identifying feasible solutions and finding extreme realizations of the uncertain parameter. The proposed algorithm was implemented to solve distributionally robust stochastic versions of three classical optimization problems and extensive numerical results are reported. The paper extends a previous, purely theoretical work of the first author on the idea of randomized strategies in nonconvex DRO problems by providing useful bounds and algorithms to solve this kind of problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武鸽子完成签到,获得积分20
刚刚
包容可仁完成签到,获得积分10
刚刚
拼搏绿柳完成签到,获得积分10
1秒前
开心的紫烟完成签到,获得积分10
1秒前
wdy111应助淡漠采纳,获得20
1秒前
1秒前
水吉2000完成签到,获得积分10
1秒前
2秒前
Owen应助zzzzz采纳,获得30
2秒前
CSPC001完成签到 ,获得积分10
3秒前
ForZero发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
乐乐应助鳗鱼灵寒采纳,获得10
5秒前
资山雁完成签到 ,获得积分10
6秒前
田様应助YixiaoWang采纳,获得10
6秒前
6秒前
ZJJ完成签到,获得积分20
6秒前
7秒前
大薯条完成签到 ,获得积分10
7秒前
one发布了新的文献求助10
7秒前
JoshuaChen发布了新的文献求助10
8秒前
锥子完成签到,获得积分10
8秒前
追风少侠李二狗完成签到,获得积分10
8秒前
9秒前
ZJJ发布了新的文献求助10
9秒前
CAOHOU应助nature采纳,获得20
9秒前
踹脸大妈发布了新的文献求助30
9秒前
Jenaloe发布了新的文献求助10
10秒前
巴斯光年发布了新的文献求助10
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
water应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
NicotineZen完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582