The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

数学优化 数学 整数规划 有界函数 整数(计算机科学) 力矩(物理) 放松(心理学) 随机算法 线性规划 最优化问题 稳健优化 线性规划松弛 计算机科学 算法 心理学 数学分析 社会心理学 物理 经典力学 程序设计语言
作者
Erick Delage,Ahmed Saif
出处
期刊:Informs Journal on Computing 卷期号:34 (1): 333-353 被引量:14
标识
DOI:10.1287/ijoc.2020.1042
摘要

Randomized decision making refers to the process of making decisions randomly according to the outcome of an independent randomization device, such as a dice roll or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, in which deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has recently been shown that using a randomized, rather than a deterministic, strategy in nonconvex distributionally robust optimization (DRO) problems can lead to improvements in their objective values. It is still unknown, though, what is the magnitude of improvement that can be attained through randomization or how to numerically find the optimal randomized strategy. In this paper, we study the value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound is tight. We then develop algorithmic procedures, based on column generation, for solving both single- and two-stage linear DRO problems with randomization that can be used with both moment-based and Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated facility location problem and report numerical results that show the quality of our bounds, the computational efficiency of the proposed solution method, and the magnitude of performance improvement achieved by randomized decisions. Summary of Contribution: In this paper, we present both theoretical results and algorithmic tools to identify optimal randomized strategies for discrete distributionally robust optimization (DRO) problems and evaluate the performance improvements that can be achieved when using them rather than classical deterministic strategies. On the theory side, we provide improvement bounds based on continuous relaxation and identify the conditions under which these bound are tight. On the algorithmic side, we propose a finitely convergent, two-layer, column-generation algorithm that iterates between identifying feasible solutions and finding extreme realizations of the uncertain parameter. The proposed algorithm was implemented to solve distributionally robust stochastic versions of three classical optimization problems and extensive numerical results are reported. The paper extends a previous, purely theoretical work of the first author on the idea of randomized strategies in nonconvex DRO problems by providing useful bounds and algorithms to solve this kind of problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Friday完成签到,获得积分20
3秒前
5秒前
lijiauyi1994发布了新的文献求助10
6秒前
7秒前
夜猫子发布了新的文献求助10
7秒前
倩倩发布了新的文献求助10
7秒前
8秒前
8秒前
ZJL发布了新的文献求助10
9秒前
10秒前
包破茧完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
mysci完成签到,获得积分10
14秒前
14秒前
蓝天发布了新的文献求助10
14秒前
bkagyin应助努力摸鱼的柠檬采纳,获得10
14秒前
ll发布了新的文献求助10
14秒前
无极微光应助HongMou采纳,获得20
16秒前
苏氨酸完成签到,获得积分10
16秒前
womendoukeyi发布了新的文献求助10
16秒前
17秒前
18秒前
NexusExplorer应助ll采纳,获得10
19秒前
20秒前
21秒前
日富一日完成签到,获得积分10
22秒前
深情安青应助茶米采纳,获得10
22秒前
22秒前
Lucas应助散热采纳,获得10
23秒前
默默的靖发布了新的文献求助10
25秒前
搜集达人应助倩倩采纳,获得10
27秒前
BowieHuang应助Broadway Zhang采纳,获得10
27秒前
27秒前
29秒前
29秒前
29秒前
moss完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536699
求助须知:如何正确求助?哪些是违规求助? 4624302
关于积分的说明 14591473
捐赠科研通 4564867
什么是DOI,文献DOI怎么找? 2501941
邀请新用户注册赠送积分活动 1480687
关于科研通互助平台的介绍 1451955