亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Noncontrast Cardiac Magnetic Resonance Imaging Predictors of Heart Failure Hospitalization in Heart Failure With Preserved Ejection Fraction

医学 射血分数 心力衰竭 接收机工作特性 磁共振成像 心脏病学 内科学 心脏磁共振成像 心脏成像 稳态自由进动成像 人口 放射科 核医学 环境卫生
作者
Selçuk Küçükseymen,Arghavan Arafati,Talal Al‐Otaibi,Hossam El‐Rewaidy,Ahmed S. Fahmy,Long Ngo,Reza Nezafat
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (6): 1812-1825 被引量:7
标识
DOI:10.1002/jmri.27932
摘要

Background Heart failure patients with preserved ejection fraction (HFpEF) are at increased risk of future hospitalization. Contrast agents are often contra‐indicated in HFpEF patients due to the high prevalence of concomitant kidney disease. Therefore, the prognostic value of a noncontrast cardiac magnetic resonance imaging (MRI) for HF‐hospitalization is important. Purpose To develop and test an explainable machine learning (ML) model to investigate incremental value of noncontrast cardiac MRI for predicting HF‐hospitalization. Study Type Retrospective. Population A total of 203 HFpEF patients (mean, 64 ± 12 years, 48% women) referred for cardiac MRI were randomly split into training validation (143 patients, ~70%) and test sets (60 patients, ~30%). Field strength A 1.5 T, balanced steady‐state free precession ( bSSFP ) sequence. Assessment Two ML models were built based on the tree boosting technique and the eXtreme Gradient Boosting model (XGBoost): 1) basic clinical ML model using clinical and echocardiographic data and 2) cardiac MRI‐based ML model that included noncontrast cardiac MRI markers in addition to the basic model. The primary end point was defined as HF‐hospitalization. Statistical Tests ML tool was used for advanced statistics, and the Elastic Net method for feature selection. Area under the receiver operating characteristic (ROC) curve (AUC) was compared between models using DeLong's test. To gain insight into the ML model, the SHapley Additive exPlanations (SHAP) method was leveraged. A P ‐value <0.05 was considered statistically significant. Results During follow‐up (mean, 50 ± 39 months), 85 patients (42%) reached the end point. The cardiac MRI‐based ML model using the XGBoost algorithm provided a significantly superior prediction of HF‐hospitalization (AUC: 0.81) compared to the basic model (AUC: 0.64). The SHAP analysis revealed left atrium (LA) and right atrium (RV) strains as top imaging markers contributing to its performance with cutoff values of 17.5% and −15%, respectively. Data Conclusions Using an ML model, RV and LA strains measured in noncontrast cardiac MRI provide incremental value in predicting future hospitalization in HFpEF. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助124332采纳,获得10
11秒前
orixero应助124332采纳,获得10
11秒前
汉堡包应助124332采纳,获得10
11秒前
所所应助124332采纳,获得10
11秒前
Blah完成签到 ,获得积分10
31秒前
Blah关注了科研通微信公众号
35秒前
cloe发布了新的文献求助10
37秒前
42秒前
45秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
爱静静应助科研通管家采纳,获得10
58秒前
酷波er应助1234采纳,获得10
1分钟前
1分钟前
1分钟前
1234发布了新的文献求助10
1分钟前
松林揽月发布了新的文献求助20
1分钟前
早晚完成签到 ,获得积分10
1分钟前
123465完成签到 ,获得积分10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
2分钟前
Joseph_sss完成签到 ,获得积分10
2分钟前
2分钟前
噔噔发布了新的文献求助10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
山止川行完成签到 ,获得积分10
2分钟前
噔噔完成签到,获得积分10
3分钟前
彭于晏应助CHAIZH采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
124332发布了新的文献求助10
3分钟前
124332发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265472
求助须知:如何正确求助?哪些是违规求助? 2905520
关于积分的说明 8333965
捐赠科研通 2575806
什么是DOI,文献DOI怎么找? 1400130
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532