An Optimization Method for the Layout of Soil Humidity Sensors Based on Compressed Sensing

压缩传感 计算机科学 无线传感器网络 最优化问题 实时计算 数学优化 算法 数学 计算机网络
作者
Yunsong Jia,Xueyun Tian,Xin Chen,Xiang Li
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2021: 1-10 被引量:1
标识
DOI:10.1155/2021/9901990
摘要

In the farmland Internet of Things, to achieve precise control of production, it is necessary to obtain more data support, which requires the deployment of many sensors, and this will inevitably bring about high investment and high-cost problems. This paper mainly studies the optimization of sensor placement in the agricultural field. Through compressed sensing and algorithm optimization, the number of sensors used is reduced and the cost is reduced on the premise of ensuring the effect. At present, there are many mature sensor layout optimization methods, but these methods will have incomplete parameters due to experimental conditions and environmental factors. They are more suitable for structural health monitoring and lack research in agricultural applications. Considering that the sensor layout optimization can be converted into the characteristics of image compression selection and the compression effect of the compressed sensing theory is better, therefore, this paper proposes a sensor layout optimization method based on compressed sensing. Due to the structural characteristics of the existing measurement matrix in the compressed sensing theory, the specific position distribution of the optimized sensor layout cannot be obtained directly. This paper improves the existing sparse random measurement matrix to determine the number of sensors required for a given region and the function of the specific location of each sensor. The experimental results show that soil moisture can be measured with a small error of 0.91 by using 1/3 of the original sensor number. The result of data reconstruction using 1/6 of the original sensor is average, and the average error is up to 1.68, which is suitable for the environment with small data fluctuation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juju完成签到,获得积分10
刚刚
冷傲的荧荧完成签到,获得积分10
刚刚
刚刚
英姑应助顺心书琴采纳,获得10
1秒前
大个应助聪明蛋子采纳,获得10
1秒前
2秒前
爱笑鸡翅完成签到 ,获得积分10
3秒前
无花果应助一个小胖子采纳,获得10
3秒前
3秒前
桐桐应助byq采纳,获得10
3秒前
老麦完成签到,获得积分10
3秒前
OMR123完成签到,获得积分10
3秒前
xiao应助沈客卿采纳,获得10
4秒前
4秒前
6秒前
楚子航完成签到,获得积分10
6秒前
gaogao发布了新的文献求助10
7秒前
Qq发布了新的文献求助10
8秒前
小蘑菇应助billyin采纳,获得10
8秒前
Nick发布了新的文献求助10
8秒前
lac813完成签到,获得积分10
8秒前
安和桥北完成签到 ,获得积分10
8秒前
physic发布了新的文献求助10
9秒前
LZJ完成签到 ,获得积分10
9秒前
jcs发布了新的文献求助10
9秒前
方羽应助为霄采纳,获得50
9秒前
稳如老狗发布了新的文献求助10
9秒前
纸芯完成签到 ,获得积分10
9秒前
贝儿完成签到 ,获得积分10
10秒前
朱良良完成签到,获得积分10
10秒前
10秒前
打打应助LWJ采纳,获得10
11秒前
善学以致用应助南风采纳,获得10
11秒前
领导范儿应助潇洒的怜阳采纳,获得10
11秒前
11秒前
石破天惊完成签到,获得积分10
11秒前
科目三应助认真的曲奇采纳,获得10
12秒前
隐形曼青应助闻诗歌采纳,获得10
12秒前
13秒前
研友_VZG7GZ应助大朋采纳,获得10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413849
求助须知:如何正确求助?哪些是违规求助? 3016030
关于积分的说明 8873857
捐赠科研通 2703729
什么是DOI,文献DOI怎么找? 1482427
科研通“疑难数据库(出版商)”最低求助积分说明 685298
邀请新用户注册赠送积分活动 680036