An Optimization Method for the Layout of Soil Humidity Sensors Based on Compressed Sensing

压缩传感 计算机科学 无线传感器网络 最优化问题 实时计算 数学优化 算法 数学 计算机网络
作者
Yunsong Jia,Xueyun Tian,Xin Chen,Xiang Li
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2021: 1-10 被引量:1
标识
DOI:10.1155/2021/9901990
摘要

In the farmland Internet of Things, to achieve precise control of production, it is necessary to obtain more data support, which requires the deployment of many sensors, and this will inevitably bring about high investment and high-cost problems. This paper mainly studies the optimization of sensor placement in the agricultural field. Through compressed sensing and algorithm optimization, the number of sensors used is reduced and the cost is reduced on the premise of ensuring the effect. At present, there are many mature sensor layout optimization methods, but these methods will have incomplete parameters due to experimental conditions and environmental factors. They are more suitable for structural health monitoring and lack research in agricultural applications. Considering that the sensor layout optimization can be converted into the characteristics of image compression selection and the compression effect of the compressed sensing theory is better, therefore, this paper proposes a sensor layout optimization method based on compressed sensing. Due to the structural characteristics of the existing measurement matrix in the compressed sensing theory, the specific position distribution of the optimized sensor layout cannot be obtained directly. This paper improves the existing sparse random measurement matrix to determine the number of sensors required for a given region and the function of the specific location of each sensor. The experimental results show that soil moisture can be measured with a small error of 0.91 by using 1/3 of the original sensor number. The result of data reconstruction using 1/6 of the original sensor is average, and the average error is up to 1.68, which is suitable for the environment with small data fluctuation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
刚刚
断棍豪斯完成签到,获得积分10
刚刚
ZC发布了新的文献求助10
刚刚
彭于晏应助科研通管家采纳,获得30
刚刚
yyyyy发布了新的文献求助10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
Hilda007应助科研通管家采纳,获得20
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
肉夹馍发布了新的文献求助10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
丰知然应助科研通管家采纳,获得10
1秒前
1秒前
www发布了新的文献求助10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
刘桦境发布了新的文献求助10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
LX应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
zzz关闭了zzz文献求助
2秒前
给个麦你呗完成签到 ,获得积分10
2秒前
Ancestor完成签到,获得积分20
2秒前
2秒前
现代的无春完成签到,获得积分10
2秒前
拉长的冷霜完成签到 ,获得积分10
3秒前
雅若晨兮完成签到,获得积分20
3秒前
Wangjingxuan完成签到,获得积分10
3秒前
4秒前
tt发布了新的文献求助10
4秒前
乐乐应助eui采纳,获得10
5秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586092
求助须知:如何正确求助?哪些是违规求助? 4669441
关于积分的说明 14778117
捐赠科研通 4618823
什么是DOI,文献DOI怎么找? 2530777
邀请新用户注册赠送积分活动 1499538
关于科研通互助平台的介绍 1467782