甲酰化
过程开发
连续搅拌釜式反应器
流动化学
工艺工程
微型反应器
危险废物
化学
混合(物理)
硝化作用
有机化学
工程类
催化作用
废物管理
物理
物理化学
量子力学
作者
Benoit Cardinal‐David,Kaid C. Harper,Anuj Verma,David Hanna,Daniel D. Caspi,Christopher Vitale,Jeffrey T. Bien,Zhe Wang,Moiz Diwan
标识
DOI:10.1021/acs.oprd.1c00249
摘要
Manufacturing API and pharmaceutical intermediates requires the development of scalable, safe, and environmentally friendly processes. Reactions with high exothermicity or otherwise hazardous in nature, as well as reactions involving the formation of unstable intermediates, can benefit from continuous processing. This technology has been broadly adopted across the pharmaceutical industry due to its intrinsic ability to operate at low reaction volumes, facilitate improved temperature control, and safely accommodate higher pressures. Two such industrially relevant examples are aromatic nitration and regioselective aryl ring metalation, followed by trapping with an electrophile. Both reaction classes commonly face scale-up challenges when performed in batch processing. The nitration reaction usually features a multiphase, mixing-sensitive reaction associated with a large exotherm that can lead to the formation of potentially hazardous overnitrated byproducts. Similarly, metalation reactions of aryl rings often require cryogenic conditions, which are challenging to achieve on scale. In this study, a mixing-limited solid–liquid–liquid (S–L–L) nitration reaction was evaluated to understand the transport phenomena. The determination of the Hatta number and impact of the impeller power on the kinetics enabled the design of a safe, scalable, high-yielding, and robust continuous stirred tank (CSTR) flow process. A study of critical formylation reaction parameters led to a first-generation tubular flow reactor design to process >10 kg of a substrate in the pilot plant. A more practical CSTR reactor system in series was developed to support a resupply delivery. This reactor configuration enabled superior temperature control, alleviated the risks associated with salt formation, and increased the throughput and yield.
科研通智能强力驱动
Strongly Powered by AbleSci AI