Deep Texture-Aware Features for Camouflaged Object Detection

计算机科学 人工智能 纹理(宇宙学) 目标检测 卷积神经网络 模式识别(心理学) 对象(语法) 水准点(测量) 计算机视觉 纹理过滤 图像纹理 特征提取 集合(抽象数据类型) 一致性(知识库) 边距(机器学习) 纹理压缩 图像(数学) 图像分割 机器学习 大地测量学 程序设计语言 地理
作者
Jingjing Ren,Xiaowei Hu,Lei Zhu,Xuemiao Xu,Yangyang Xu,Weiming Wang,Zijun Deng,Pheng‐Ann Heng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1157-1167 被引量:88
标识
DOI:10.1109/tcsvt.2021.3126591
摘要

Camouflaged object detection is a challenging task that aims to identify objects having similar texture to the surroundings. This paper presents to amplify the subtle texture difference between camouflaged objects and the background for camouflaged object detection by formulating multiple texture-aware refinement modules to learn the texture-aware features in a deep convolutional neural network. The texture-aware refinement module computes the biased co-variance matrices of feature responses to extract the texture information, adopts an affinity loss to learn a set of parameter maps that help to separate the texture between camouflaged objects and the background, and leverages a boundary-consistency loss to explore the structures of object details. We evaluate our network on the benchmark datasets for camouflaged object detection both qualitatively and quantitatively. Experimental results show that our approach outperforms various state-of-the-art methods by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL发布了新的文献求助10
1秒前
科研通AI6应助沉静的浩然采纳,获得30
1秒前
1秒前
冷萃咖啡完成签到,获得积分10
2秒前
小林完成签到 ,获得积分10
2秒前
鱼的宇宙完成签到,获得积分20
2秒前
3秒前
4秒前
击剑男孩发布了新的文献求助10
4秒前
科研通AI6应助Qianfan采纳,获得10
6秒前
终梦发布了新的文献求助10
7秒前
薄荷味完成签到 ,获得积分10
7秒前
orixero应助李小新采纳,获得10
7秒前
ChenYifei发布了新的文献求助10
8秒前
8秒前
金子悠月完成签到,获得积分10
8秒前
qkm123发布了新的文献求助10
9秒前
浮游应助文艺抽屉123采纳,获得10
10秒前
击剑男孩完成签到,获得积分10
11秒前
淘淘完成签到,获得积分10
11秒前
ysy完成签到,获得积分10
11秒前
neo完成签到,获得积分10
11秒前
angela完成签到,获得积分10
12秒前
12秒前
852应助梅菜菜采纳,获得10
12秒前
欢呼的雨琴完成签到 ,获得积分10
12秒前
作风作雨完成签到,获得积分10
14秒前
KYRIE发布了新的文献求助10
14秒前
Mark0001完成签到,获得积分20
16秒前
朴实雨竹完成签到,获得积分10
16秒前
16秒前
科研通AI5应助浮生如梦采纳,获得100
17秒前
大妈发布了新的文献求助10
18秒前
执着绿草完成签到 ,获得积分10
18秒前
丘比特应助哈哈哈采纳,获得10
18秒前
KYRIE完成签到,获得积分10
19秒前
323完成签到,获得积分10
19秒前
19秒前
DAYE完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911338
求助须知:如何正确求助?哪些是违规求助? 4186859
关于积分的说明 13001611
捐赠科研通 3954670
什么是DOI,文献DOI怎么找? 2168382
邀请新用户注册赠送积分活动 1186856
关于科研通互助平台的介绍 1094206