亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Texture-Aware Features for Camouflaged Object Detection

计算机科学 人工智能 纹理(宇宙学) 目标检测 卷积神经网络 模式识别(心理学) 对象(语法) 水准点(测量) 计算机视觉 纹理过滤 图像纹理 特征提取 集合(抽象数据类型) 一致性(知识库) 边距(机器学习) 纹理压缩 图像(数学) 图像分割 机器学习 大地测量学 程序设计语言 地理
作者
Jingjing Ren,Xiaowei Hu,Lei Zhu,Xuemiao Xu,Yangyang Xu,Weiming Wang,Zijun Deng,Pheng‐Ann Heng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1157-1167 被引量:90
标识
DOI:10.1109/tcsvt.2021.3126591
摘要

Camouflaged object detection is a challenging task that aims to identify objects having similar texture to the surroundings. This paper presents to amplify the subtle texture difference between camouflaged objects and the background for camouflaged object detection by formulating multiple texture-aware refinement modules to learn the texture-aware features in a deep convolutional neural network. The texture-aware refinement module computes the biased co-variance matrices of feature responses to extract the texture information, adopts an affinity loss to learn a set of parameter maps that help to separate the texture between camouflaged objects and the background, and leverages a boundary-consistency loss to explore the structures of object details. We evaluate our network on the benchmark datasets for camouflaged object detection both qualitatively and quantitatively. Experimental results show that our approach outperforms various state-of-the-art methods by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xun发布了新的文献求助10
刚刚
刚刚
CodeCraft应助xun采纳,获得10
8秒前
25秒前
28秒前
xun发布了新的文献求助10
35秒前
42秒前
48秒前
53秒前
Eugene完成签到,获得积分10
54秒前
56秒前
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xun完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
婉莹完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
af完成签到,获得积分10
2分钟前
2分钟前
婕仔发布了新的文献求助10
3分钟前
3分钟前
婕仔完成签到,获得积分10
3分钟前
花椰菜完成签到,获得积分20
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
科目三应助花椰菜采纳,获得10
3分钟前
3分钟前
3分钟前
花椰菜发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509712
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088