Machine learning for energy performance prediction at the design stage of buildings

阶段(地层学) 能量(信号处理) 计算机科学 能源性能 建筑工程 人工智能 机器学习 环境科学 工程类 地质学 数学 统计 古生物学
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Energy for Sustainable Development [Elsevier]
卷期号:66: 12-25 被引量:23
标识
DOI:10.1016/j.esd.2021.11.002
摘要

The substantial amount of energy consumption in buildings and the associated adverse effects prompts the importance of understanding building energy efficiency. Developing an energy prediction model with high accuracy is considered one of the most effective approach to understanding building energy efficiency. Therefore, various studies have developed diverse models for predicting building energy consumption focused on the current building stock. However, to ensure future buildings are constructed to be more energy efficient, it is essential to consider energy efficiency at the design stage. Machine Learning (ML) algorithms are considered the most contemporary and best method for prediction, and these algorithms (such as Support Vector Machine (SVM) and Decision Tree (DT), among others) have gained much attention in the field of energy prediction. However, no study has explored the application of hyper parameter tuning and feature selection methods in developing a design stage Machine Learning (ML) energy predictive model. In this research, nine machine learning classification-based algorithms were compared for energy performance assessment at the design stage of residential buildings. Additionally, feature selection and hyper parameter tunning were implemented. The result shows that it is possible to develop a high performing ML model for building energy use prediction at the design stage. Furthermore, Gradient Boosting (GB) outperformed the other models with an accuracy of 0.67 for predicting building energy performance. • We explored the development of an efficient energy performance assessment model for building designers. • We developed nine models for assessing energy performance at the building design stage. • We investigated the effect of feature selection on model performance • We conducted parameter optimization to achieve the best performance

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
小马甲应助李里哩采纳,获得10
2秒前
strive发布了新的文献求助10
2秒前
小蘑菇应助satchzhao采纳,获得10
3秒前
梓树发布了新的文献求助10
4秒前
彭于晏应助喜喜不嘻嘻采纳,获得10
4秒前
故槿完成签到 ,获得积分10
5秒前
乙未发布了新的文献求助10
6秒前
6秒前
大模型应助honey采纳,获得10
6秒前
HY发布了新的文献求助10
6秒前
7秒前
模糊老师完成签到,获得积分10
8秒前
8秒前
碧霄完成签到,获得积分10
9秒前
沉默的瑞宝完成签到 ,获得积分10
9秒前
Adam_Lan完成签到,获得积分10
9秒前
顾矜应助明理的帆布鞋采纳,获得10
10秒前
10秒前
乐乐应助乙未采纳,获得10
11秒前
Hello应助儒雅致远采纳,获得10
12秒前
lalalal发布了新的文献求助10
12秒前
13秒前
轨迹应助嘿嘿采纳,获得10
13秒前
Decline发布了新的文献求助10
13秒前
大胆的映萱关注了科研通微信公众号
13秒前
GYR完成签到,获得积分10
14秒前
刘小蕊完成签到,获得积分10
14秒前
花木兰发布了新的文献求助10
14秒前
yuaner发布了新的文献求助10
14秒前
HY完成签到,获得积分10
14秒前
hxh完成签到,获得积分10
15秒前
15秒前
ccc发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167