Machine learning for energy performance prediction at the design stage of buildings

阶段(地层学) 能量(信号处理) 计算机科学 能源性能 建筑工程 人工智能 机器学习 环境科学 工程类 地质学 数学 统计 古生物学
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Energy for Sustainable Development [Elsevier]
卷期号:66: 12-25 被引量:23
标识
DOI:10.1016/j.esd.2021.11.002
摘要

The substantial amount of energy consumption in buildings and the associated adverse effects prompts the importance of understanding building energy efficiency. Developing an energy prediction model with high accuracy is considered one of the most effective approach to understanding building energy efficiency. Therefore, various studies have developed diverse models for predicting building energy consumption focused on the current building stock. However, to ensure future buildings are constructed to be more energy efficient, it is essential to consider energy efficiency at the design stage. Machine Learning (ML) algorithms are considered the most contemporary and best method for prediction, and these algorithms (such as Support Vector Machine (SVM) and Decision Tree (DT), among others) have gained much attention in the field of energy prediction. However, no study has explored the application of hyper parameter tuning and feature selection methods in developing a design stage Machine Learning (ML) energy predictive model. In this research, nine machine learning classification-based algorithms were compared for energy performance assessment at the design stage of residential buildings. Additionally, feature selection and hyper parameter tunning were implemented. The result shows that it is possible to develop a high performing ML model for building energy use prediction at the design stage. Furthermore, Gradient Boosting (GB) outperformed the other models with an accuracy of 0.67 for predicting building energy performance. • We explored the development of an efficient energy performance assessment model for building designers. • We developed nine models for assessing energy performance at the building design stage. • We investigated the effect of feature selection on model performance • We conducted parameter optimization to achieve the best performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯xl完成签到,获得积分10
刚刚
1秒前
Zhjie126发布了新的文献求助10
1秒前
健壮的若冰完成签到 ,获得积分10
1秒前
3秒前
3秒前
万能图书馆应助哈哈哈采纳,获得10
4秒前
5秒前
5秒前
her发布了新的文献求助30
6秒前
xxxxx发布了新的文献求助10
6秒前
呗呗兔发布了新的文献求助10
8秒前
小二郎应助平淡的万言采纳,获得10
8秒前
8秒前
8秒前
lslslslsllss发布了新的文献求助20
10秒前
10秒前
Na发布了新的文献求助30
10秒前
12秒前
cxy发布了新的文献求助10
12秒前
木子发布了新的文献求助10
12秒前
善学以致用应助辛巴采纳,获得10
15秒前
ww发布了新的文献求助10
15秒前
Criminology34应助sks采纳,获得10
17秒前
三金完成签到 ,获得积分10
17秒前
hou发布了新的文献求助10
19秒前
Owen应助cxy采纳,获得10
19秒前
啊哈哈哈哈完成签到,获得积分10
20秒前
20秒前
无聊的土豆完成签到,获得积分10
20秒前
21秒前
21秒前
外向青筠完成签到 ,获得积分10
22秒前
SilentRP完成签到,获得积分10
23秒前
24秒前
我歌发布了新的文献求助10
26秒前
victor完成签到,获得积分10
26秒前
28秒前
JamesPei应助ww采纳,获得10
28秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992