Machine learning for energy performance prediction at the design stage of buildings

阶段(地层学) 能量(信号处理) 计算机科学 能源性能 建筑工程 人工智能 机器学习 环境科学 工程类 地质学 数学 统计 古生物学
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Energy for Sustainable Development [Elsevier]
卷期号:66: 12-25 被引量:23
标识
DOI:10.1016/j.esd.2021.11.002
摘要

The substantial amount of energy consumption in buildings and the associated adverse effects prompts the importance of understanding building energy efficiency. Developing an energy prediction model with high accuracy is considered one of the most effective approach to understanding building energy efficiency. Therefore, various studies have developed diverse models for predicting building energy consumption focused on the current building stock. However, to ensure future buildings are constructed to be more energy efficient, it is essential to consider energy efficiency at the design stage. Machine Learning (ML) algorithms are considered the most contemporary and best method for prediction, and these algorithms (such as Support Vector Machine (SVM) and Decision Tree (DT), among others) have gained much attention in the field of energy prediction. However, no study has explored the application of hyper parameter tuning and feature selection methods in developing a design stage Machine Learning (ML) energy predictive model. In this research, nine machine learning classification-based algorithms were compared for energy performance assessment at the design stage of residential buildings. Additionally, feature selection and hyper parameter tunning were implemented. The result shows that it is possible to develop a high performing ML model for building energy use prediction at the design stage. Furthermore, Gradient Boosting (GB) outperformed the other models with an accuracy of 0.67 for predicting building energy performance. • We explored the development of an efficient energy performance assessment model for building designers. • We developed nine models for assessing energy performance at the building design stage. • We investigated the effect of feature selection on model performance • We conducted parameter optimization to achieve the best performance

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啤酒白菜完成签到,获得积分10
刚刚
刚刚
咸鱼发布了新的文献求助10
刚刚
未道发布了新的文献求助10
刚刚
刚刚
丘比特应助axl采纳,获得10
1秒前
AN发布了新的文献求助10
1秒前
田様应助ff采纳,获得10
1秒前
tah发布了新的文献求助10
1秒前
xiamu发布了新的文献求助10
1秒前
杨怡红发布了新的文献求助10
3秒前
LovelyYy发布了新的文献求助10
3秒前
研友_5Z46A5完成签到,获得积分10
3秒前
3秒前
orixero应助海蓝博采纳,获得10
3秒前
漫漫发布了新的文献求助10
4秒前
DD完成签到,获得积分20
4秒前
bellaluna完成签到,获得积分10
4秒前
4秒前
5秒前
大气的氧发布了新的文献求助10
5秒前
5秒前
djh完成签到,获得积分0
5秒前
英姑应助Lazyneko采纳,获得10
5秒前
苗条的善斓完成签到,获得积分10
5秒前
贪玩的跳跳糖完成签到,获得积分10
5秒前
爱撒娇的妙竹完成签到,获得积分10
7秒前
guanoo完成签到,获得积分10
7秒前
求是完成签到,获得积分20
7秒前
gyhmm完成签到,获得积分10
7秒前
刘勇完成签到,获得积分10
8秒前
8秒前
宝藏发布了新的文献求助10
8秒前
8秒前
落泺完成签到 ,获得积分10
8秒前
YBHTLLLL完成签到,获得积分10
9秒前
大个应助AN采纳,获得10
9秒前
槑槑发布了新的文献求助10
9秒前
9秒前
英俊的铭应助fairy采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848