Machine learning for energy performance prediction at the design stage of buildings

阶段(地层学) 能量(信号处理) 计算机科学 能源性能 建筑工程 人工智能 机器学习 环境科学 工程类 地质学 数学 统计 古生物学
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Energy for Sustainable Development [Elsevier]
卷期号:66: 12-25 被引量:23
标识
DOI:10.1016/j.esd.2021.11.002
摘要

The substantial amount of energy consumption in buildings and the associated adverse effects prompts the importance of understanding building energy efficiency. Developing an energy prediction model with high accuracy is considered one of the most effective approach to understanding building energy efficiency. Therefore, various studies have developed diverse models for predicting building energy consumption focused on the current building stock. However, to ensure future buildings are constructed to be more energy efficient, it is essential to consider energy efficiency at the design stage. Machine Learning (ML) algorithms are considered the most contemporary and best method for prediction, and these algorithms (such as Support Vector Machine (SVM) and Decision Tree (DT), among others) have gained much attention in the field of energy prediction. However, no study has explored the application of hyper parameter tuning and feature selection methods in developing a design stage Machine Learning (ML) energy predictive model. In this research, nine machine learning classification-based algorithms were compared for energy performance assessment at the design stage of residential buildings. Additionally, feature selection and hyper parameter tunning were implemented. The result shows that it is possible to develop a high performing ML model for building energy use prediction at the design stage. Furthermore, Gradient Boosting (GB) outperformed the other models with an accuracy of 0.67 for predicting building energy performance. • We explored the development of an efficient energy performance assessment model for building designers. • We developed nine models for assessing energy performance at the building design stage. • We investigated the effect of feature selection on model performance • We conducted parameter optimization to achieve the best performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
启航完成签到,获得积分10
刚刚
刚刚
安静无招发布了新的文献求助10
1秒前
子车茗应助Ganlou采纳,获得10
1秒前
冷酷思远完成签到 ,获得积分10
1秒前
2秒前
GAN完成签到,获得积分10
2秒前
科研通AI2S应助w我我我采纳,获得10
2秒前
2秒前
林贞宝宝完成签到,获得积分20
2秒前
ertredffg发布了新的文献求助10
3秒前
3秒前
SAINT发布了新的文献求助10
3秒前
oubggggggg完成签到,获得积分10
4秒前
vvSirius完成签到,获得积分10
4秒前
4秒前
4秒前
Hello应助1LDan采纳,获得10
4秒前
明朗完成签到 ,获得积分10
4秒前
星辰大海应助东方采纳,获得10
5秒前
英姑应助sada采纳,获得10
5秒前
随意完成签到,获得积分10
5秒前
ding应助热情的达采纳,获得20
6秒前
思源应助贪玩蔡徐坤采纳,获得10
6秒前
钱俊发布了新的文献求助10
6秒前
汉堡包应助无与伦比采纳,获得10
7秒前
Ye完成签到 ,获得积分10
7秒前
在水一方应助要吃虾饺吗采纳,获得10
7秒前
领导范儿应助秀兰采纳,获得10
8秒前
frank完成签到,获得积分10
8秒前
8秒前
不安惜寒发布了新的文献求助10
8秒前
9秒前
johnny完成签到,获得积分10
9秒前
研友_Z34DG8发布了新的文献求助10
9秒前
11完成签到,获得积分20
9秒前
10秒前
10秒前
顾矜应助搞份炸鸡778采纳,获得10
10秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443