亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for energy performance prediction at the design stage of buildings

阶段(地层学) 能量(信号处理) 计算机科学 能源性能 建筑工程 人工智能 机器学习 环境科学 工程类 地质学 数学 统计 古生物学
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Energy for Sustainable Development [Elsevier BV]
卷期号:66: 12-25 被引量:23
标识
DOI:10.1016/j.esd.2021.11.002
摘要

The substantial amount of energy consumption in buildings and the associated adverse effects prompts the importance of understanding building energy efficiency. Developing an energy prediction model with high accuracy is considered one of the most effective approach to understanding building energy efficiency. Therefore, various studies have developed diverse models for predicting building energy consumption focused on the current building stock. However, to ensure future buildings are constructed to be more energy efficient, it is essential to consider energy efficiency at the design stage. Machine Learning (ML) algorithms are considered the most contemporary and best method for prediction, and these algorithms (such as Support Vector Machine (SVM) and Decision Tree (DT), among others) have gained much attention in the field of energy prediction. However, no study has explored the application of hyper parameter tuning and feature selection methods in developing a design stage Machine Learning (ML) energy predictive model. In this research, nine machine learning classification-based algorithms were compared for energy performance assessment at the design stage of residential buildings. Additionally, feature selection and hyper parameter tunning were implemented. The result shows that it is possible to develop a high performing ML model for building energy use prediction at the design stage. Furthermore, Gradient Boosting (GB) outperformed the other models with an accuracy of 0.67 for predicting building energy performance. • We explored the development of an efficient energy performance assessment model for building designers. • We developed nine models for assessing energy performance at the building design stage. • We investigated the effect of feature selection on model performance • We conducted parameter optimization to achieve the best performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研实习生采纳,获得10
3秒前
9秒前
17秒前
19秒前
23秒前
牛八先生完成签到,获得积分10
27秒前
烟花应助Dreamer.采纳,获得10
32秒前
Asura完成签到,获得积分10
32秒前
35秒前
RR发布了新的文献求助10
35秒前
科研通AI2S应助科研通管家采纳,获得30
39秒前
馆长应助科研通管家采纳,获得10
39秒前
馆长应助科研通管家采纳,获得10
39秒前
小二郎应助科研通管家采纳,获得10
39秒前
科研通AI6应助哈哈哈采纳,获得10
41秒前
RR完成签到,获得积分10
49秒前
49秒前
Hodlumm发布了新的文献求助10
54秒前
哈哈哈发布了新的文献求助10
58秒前
1分钟前
1分钟前
无产阶级科学者完成签到,获得积分10
1分钟前
云梦完成签到,获得积分10
1分钟前
Dreamer.发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
文艺易蓉发布了新的文献求助10
1分钟前
彭于晏应助文艺易蓉采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
Yan发布了新的文献求助10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
科研通AI5应助Yan采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587