Machine learning for energy performance prediction at the design stage of buildings

阶段(地层学) 能量(信号处理) 计算机科学 能源性能 建筑工程 人工智能 机器学习 环境科学 工程类 地质学 数学 统计 古生物学
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Energy for Sustainable Development [Elsevier]
卷期号:66: 12-25 被引量:23
标识
DOI:10.1016/j.esd.2021.11.002
摘要

The substantial amount of energy consumption in buildings and the associated adverse effects prompts the importance of understanding building energy efficiency. Developing an energy prediction model with high accuracy is considered one of the most effective approach to understanding building energy efficiency. Therefore, various studies have developed diverse models for predicting building energy consumption focused on the current building stock. However, to ensure future buildings are constructed to be more energy efficient, it is essential to consider energy efficiency at the design stage. Machine Learning (ML) algorithms are considered the most contemporary and best method for prediction, and these algorithms (such as Support Vector Machine (SVM) and Decision Tree (DT), among others) have gained much attention in the field of energy prediction. However, no study has explored the application of hyper parameter tuning and feature selection methods in developing a design stage Machine Learning (ML) energy predictive model. In this research, nine machine learning classification-based algorithms were compared for energy performance assessment at the design stage of residential buildings. Additionally, feature selection and hyper parameter tunning were implemented. The result shows that it is possible to develop a high performing ML model for building energy use prediction at the design stage. Furthermore, Gradient Boosting (GB) outperformed the other models with an accuracy of 0.67 for predicting building energy performance. • We explored the development of an efficient energy performance assessment model for building designers. • We developed nine models for assessing energy performance at the building design stage. • We investigated the effect of feature selection on model performance • We conducted parameter optimization to achieve the best performance

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzhgoashore完成签到,获得积分10
刚刚
迷路的翠容完成签到,获得积分10
刚刚
LHL完成签到,获得积分10
刚刚
刚刚
zy完成签到,获得积分10
刚刚
focus完成签到 ,获得积分10
1秒前
轰车车发布了新的文献求助10
1秒前
坚强的迎天完成签到,获得积分10
1秒前
高挑的棕色蛟龙完成签到,获得积分10
1秒前
缓慢的高山完成签到,获得积分10
1秒前
2秒前
小医小鱼发布了新的文献求助20
2秒前
星星完成签到,获得积分10
2秒前
4秒前
gzy关闭了gzy文献求助
4秒前
Leexxxhaoo完成签到,获得积分10
4秒前
泌尿刘亚东完成签到,获得积分10
4秒前
游戏那我可徐完成签到 ,获得积分10
4秒前
milk完成签到 ,获得积分10
5秒前
5秒前
8R60d8应助Robby采纳,获得10
5秒前
sunyuan完成签到,获得积分20
5秒前
芽芽鸭完成签到 ,获得积分20
6秒前
大红完成签到,获得积分10
6秒前
柳絮发布了新的文献求助10
7秒前
xinyihang完成签到 ,获得积分10
7秒前
7秒前
苗条平萱完成签到,获得积分10
8秒前
xcc完成签到,获得积分10
8秒前
华仔应助nn采纳,获得10
9秒前
林三叶关注了科研通微信公众号
9秒前
QQ完成签到 ,获得积分10
9秒前
9秒前
低级趣味完成签到,获得积分10
10秒前
10秒前
xx完成签到 ,获得积分10
10秒前
愉快又莲发布了新的文献求助10
11秒前
浮游应助RogerLY采纳,获得10
11秒前
大美女完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977