光电阴极
光电流
降级(电信)
材料科学
异质结
乙烯
法拉第效率
电解质
氧化物
氧化还原
化学工程
人工光合作用
氢
催化作用
光化学
纳米技术
光催化
光电子学
化学
电子
电极
计算机科学
有机化学
物理化学
冶金
工程类
物理
电信
量子力学
生物化学
作者
Guiji Liu,Fan Zheng,Junrui Li,Guosong Zeng,Yifan Ye,David M. Larson,Junko Yano,Ethan J. Crumlin,Joel W. Ager,Lin‐Wang Wang,Francesca M. Toma
出处
期刊:Nature Energy
[Springer Nature]
日期:2021-11-08
卷期号:6 (12): 1124-1132
被引量:107
标识
DOI:10.1038/s41560-021-00927-1
摘要
The chemical transformations that occur in metal oxides under operating conditions limit their applications for artificial photosynthesis. Understanding these chemical changes is a prerequisite to achieve sustainable production of solar fuels and chemicals. Herein, we use a correlative approach to unravel how cuprous oxide (Cu2O) photoelectrodes change under reaction conditions and, consequently, provide a protection scheme to mitigate degradation. In agreement with theoretical predictions, we find that under illumination the Cu2O concurrently undergoes reduction by photoelectrons and oxidation by holes in the material at electrolyte-dependent degradation rates. These mechanistic insights led us to design a protection scheme that uses a silver catalyst to accelerate transfer of photogenerated electrons and a Z-scheme heterojunction to extract holes. The resulting photocathode exhibits a stable photocurrent for CO2 reduction with ~60% Faradaic efficiency for ethylene with a balance of hydrogen for hours, whereas bare Cu2O degrades within minutes.
科研通智能强力驱动
Strongly Powered by AbleSci AI