纳米棒
光催化
氧化还原
材料科学
半导体
光化学
分解水
量子产额
纳米晶
纳米技术
化学工程
催化作用
光电子学
化学
物理
工程类
荧光
量子力学
生物化学
冶金
作者
Thomas Simon,Nicolas Bouchonville,Maximilian J. Berr,Aleksandar Vaneski,Asmir Adrović,David Volbers,Regina Wyrwich,Markus Döblinger,Andrei S. Susha,Andrey L. Rogach,Frank Jäckel,Jacek K. Stolarczyk,Jochen Feldmann
出处
期刊:Nature Materials
[Springer Nature]
日期:2014-08-01
卷期号:13 (11): 1013-1018
被引量:768
摘要
Photocatalytic efficiency can be limited by slow transfer of photoexcited holes and high charge recombination rates. Using a hydroxyl anion–radical redox couple leads to enhanced photocatalytic H2 generation on Ni-decorated CdS nanorods. Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage1. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties2,3,4 as well as advances in their synthesis5,6. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g−1 h−1, respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI