已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SVMs Modeling for Highly Imbalanced Classification

欠采样 支持向量机 计算机科学 人工智能 机器学习 班级(哲学) 集合(抽象数据类型) 启发式 数据挖掘 模式识别(心理学) 操作系统 程序设计语言
作者
Yuchun Tang,Yanqing Zhang,Nitesh V. Chawla,Sven Krasser
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 281-288 被引量:914
标识
DOI:10.1109/tsmcb.2008.2002909
摘要

Traditional classification algorithms can be limited in their performance on highly unbalanced data sets. A popular stream of work for countering the problem of class imbalance has been the application of a sundry of sampling strategies. In this paper, we focus on designing modifications to support vector machines (SVMs) to appropriately tackle the problem of class imbalance. We incorporate different "rebalance" heuristics in SVM modeling, including cost-sensitive learning, and over- and undersampling. These SVM-based strategies are compared with various state-of-the-art approaches on a variety of data sets by using various metrics, including G-mean, area under the receiver operating characteristic curve, F-measure, and area under the precision/recall curve. We show that we are able to surpass or match the previously known best algorithms on each data set. In particular, of the four SVM variations considered in this paper, the novel granular SVMs-repetitive undersampling algorithm (GSVM-RU) is the best in terms of both effectiveness and efficiency. GSVM-RU is effective, as it can minimize the negative effect of information loss while maximizing the positive effect of data cleaning in the undersampling process. GSVM-RU is efficient by extracting much less support vectors and, hence, greatly speeding up SVM prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Rational完成签到,获得积分10
2秒前
迪丽热巴发布了新的文献求助10
2秒前
3秒前
3秒前
你不刷牙发布了新的文献求助10
5秒前
浦肯野应助安静的早晨采纳,获得50
6秒前
6秒前
香蕉觅云应助超级的鹅采纳,获得10
6秒前
桃子e完成签到 ,获得积分10
6秒前
怡然夏槐发布了新的文献求助10
7秒前
钒V完成签到 ,获得积分10
7秒前
深情安青应助cc采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
友好若南完成签到,获得积分10
10秒前
领导范儿应助隐形千愁采纳,获得10
11秒前
绿小豆发布了新的文献求助10
11秒前
EZIO发布了新的文献求助10
11秒前
豆小豆完成签到,获得积分20
11秒前
14秒前
14秒前
16秒前
16秒前
钒V关注了科研通微信公众号
16秒前
CAS_lyw完成签到,获得积分10
17秒前
18秒前
星辰大海应助seven采纳,获得10
18秒前
18秒前
19秒前
六角完成签到,获得积分10
19秒前
ZZ发布了新的文献求助10
20秒前
cc发布了新的文献求助10
20秒前
esther发布了新的文献求助30
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491104
求助须知:如何正确求助?哪些是违规求助? 3077781
关于积分的说明 9150387
捐赠科研通 2770232
什么是DOI,文献DOI怎么找? 1520217
邀请新用户注册赠送积分活动 704513
科研通“疑难数据库(出版商)”最低求助积分说明 702196