已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SVMs Modeling for Highly Imbalanced Classification

欠采样 支持向量机 计算机科学 人工智能 机器学习 班级(哲学) 集合(抽象数据类型) 启发式 数据挖掘 模式识别(心理学) 操作系统 程序设计语言
作者
Yuchun Tang,Yanqing Zhang,Nitesh V. Chawla,Sven Krasser
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 281-288 被引量:914
标识
DOI:10.1109/tsmcb.2008.2002909
摘要

Traditional classification algorithms can be limited in their performance on highly unbalanced data sets. A popular stream of work for countering the problem of class imbalance has been the application of a sundry of sampling strategies. In this paper, we focus on designing modifications to support vector machines (SVMs) to appropriately tackle the problem of class imbalance. We incorporate different "rebalance" heuristics in SVM modeling, including cost-sensitive learning, and over- and undersampling. These SVM-based strategies are compared with various state-of-the-art approaches on a variety of data sets by using various metrics, including G-mean, area under the receiver operating characteristic curve, F-measure, and area under the precision/recall curve. We show that we are able to surpass or match the previously known best algorithms on each data set. In particular, of the four SVM variations considered in this paper, the novel granular SVMs-repetitive undersampling algorithm (GSVM-RU) is the best in terms of both effectiveness and efficiency. GSVM-RU is effective, as it can minimize the negative effect of information loss while maximizing the positive effect of data cleaning in the undersampling process. GSVM-RU is efficient by extracting much less support vectors and, hence, greatly speeding up SVM prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
衾空发布了新的文献求助10
1秒前
WW完成签到,获得积分20
2秒前
CodeCraft应助木子采纳,获得10
3秒前
3秒前
852应助John采纳,获得10
4秒前
5秒前
6秒前
我是老大应助Breeze采纳,获得10
7秒前
科目三应助优美紫槐采纳,获得10
7秒前
Hello应助hbWang采纳,获得10
8秒前
yaoli0823发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
9秒前
DDDSK发布了新的文献求助30
10秒前
10秒前
科研通AI6应助科研小魏采纳,获得10
12秒前
John完成签到,获得积分10
12秒前
12秒前
Lee发布了新的文献求助10
13秒前
14秒前
木子发布了新的文献求助10
14秒前
左手写情发布了新的文献求助30
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Mic应助科研通管家采纳,获得10
15秒前
enjoy发布了新的文献求助10
15秒前
852应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
贾克斯发布了新的文献求助10
16秒前
19秒前
杨明智完成签到 ,获得积分10
19秒前
Jasper应助伍寒烟采纳,获得10
19秒前
John发布了新的文献求助10
20秒前
yaoli0823完成签到,获得积分10
20秒前
shining发布了新的文献求助10
20秒前
充电宝应助三七采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075