Variational Mode Decomposition

希尔伯特-黄变换 维纳滤波器 噪音(视频) 基带 滤波器(信号处理) 计算机科学 算法 数学 人工智能 带宽(计算) 计算机网络 图像(数学) 计算机视觉
作者
Konstantin Dragomiretskiy,Dominique Zosso
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:62 (3): 531-544 被引量:6431
标识
DOI:10.1109/tsp.2013.2288675
摘要

During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助周杰伦采纳,获得10
1秒前
Kristin完成签到,获得积分10
2秒前
2秒前
六78910完成签到,获得积分10
2秒前
2秒前
mou发布了新的文献求助10
3秒前
曼夭非夭完成签到,获得积分10
3秒前
呵呵完成签到,获得积分10
5秒前
wm发布了新的文献求助10
5秒前
Claudplz完成签到,获得积分10
6秒前
HHHWJ完成签到 ,获得积分10
6秒前
EmmaLin完成签到,获得积分10
7秒前
cyx完成签到,获得积分20
7秒前
奋斗的不言完成签到,获得积分10
8秒前
nino完成签到,获得积分0
9秒前
千筹完成签到,获得积分10
9秒前
Wmin完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
Leslie完成签到,获得积分10
10秒前
catch完成签到,获得积分10
10秒前
mou完成签到,获得积分10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
12秒前
思源应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得50
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
烟花应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703