Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization

非负矩阵分解 主成分分析 矩阵分解 降维 模式识别(心理学) 计算机科学 独立成分分析 神经影像学 磁共振弥散成像 维数之咒 人工智能 功能磁共振成像 心理学 神经科学 磁共振成像 物理 放射科 医学 量子力学 特征向量
作者
Aristeidis Sotiras,Susan M. Resnick,Christos Davatzikos
出处
期刊:NeuroImage [Elsevier BV]
卷期号:108: 1-16 被引量:143
标识
DOI:10.1016/j.neuroimage.2014.11.045
摘要

In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
经从梦发布了新的文献求助10
刚刚
ning发布了新的文献求助10
刚刚
1秒前
jiachun完成签到,获得积分10
1秒前
打打应助123采纳,获得10
1秒前
坎衡完成签到,获得积分10
1秒前
我爆冲发布了新的文献求助10
2秒前
W~舞完成签到,获得积分10
2秒前
范1完成签到,获得积分10
2秒前
2秒前
2秒前
大慈大悲观世音完成签到,获得积分10
2秒前
2秒前
舒适乐安发布了新的文献求助10
2秒前
2秒前
Www发布了新的文献求助10
2秒前
无奈世立发布了新的文献求助10
3秒前
3秒前
wang可爱额完成签到 ,获得积分10
3秒前
钻石棋发布了新的文献求助10
3秒前
KL完成签到,获得积分10
3秒前
quanjiazhi发布了新的文献求助10
4秒前
4秒前
大饿鱼发布了新的文献求助10
5秒前
标致若风应助HVEN采纳,获得30
5秒前
CodeCraft应助MOOTEA采纳,获得10
5秒前
小叶发布了新的文献求助10
5秒前
隐形曼青应助任性柜子采纳,获得10
6秒前
小橘子发布了新的文献求助10
6秒前
斯文宛秋完成签到,获得积分10
6秒前
可爱寄松完成签到,获得积分20
6秒前
11应助view采纳,获得10
6秒前
yyyyyy完成签到,获得积分10
6秒前
7秒前
7秒前
Hello应助鸡蛋布丁采纳,获得30
8秒前
打打应助我爆冲采纳,获得10
8秒前
独特丹萱完成签到,获得积分10
8秒前
Dinglin完成签到,获得积分10
8秒前
BareBear应助优秀醉易采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237