成核
结晶
相变
相变存储器
材料科学
粒度
理论(学习稳定性)
机制(生物学)
波动性(金融)
计算机科学
相(物质)
热稳定性
纳米技术
化学物理
工程物理
化学工程
复合材料
热力学
数学
物理
工程类
计量经济学
机器学习
量子力学
作者
Weijie Wang,Desmond K. Loke,Luping Shi,Rong Zhao,Hongxin Yang,Leong‐Tat Law,Lung-Tat Ng,Kian Guan Lim,Yee‐Chia Yeo,Tow‐Chong Chong,Andrea L. Lacaita
摘要
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.
科研通智能强力驱动
Strongly Powered by AbleSci AI