光动力疗法
光敏剂
化学
单线态氧
生物物理学
细胞内
过氧化氢酶
纳米颗粒
细胞毒性T细胞
癌症研究
细胞毒性
赫拉
细胞
癌细胞
肿瘤缺氧
癌症
氧气
纳米技术
体外
生物化学
光化学
氧化应激
放射治疗
材料科学
生物
医学
有机化学
内科学
作者
Huachao Chen,Jiangwei Tian,Weijiang He,Zijian Guo
摘要
The low selectivity of currently available photosensitizers, which causes the treatment-related toxicity and side effects on adjacent normal tissues, is a major limitation for clinical photodynamic therapy (PDT) against cancer. Moreover, since PDT process is strongly oxygen dependent, its therapeutic effect is seriously hindered in hypoxic tumor cells. To overcome these problems, a cell-specific, H2O2-activatable, and O2-evolving PDT nanoparticle (HAOP NP) is developed for highly selective and efficient cancer treatment. The nanoparticle is composed of photosensitizer and catalase in the aqueous core, black hole quencher in the polymeric shell, and functionalized with a tumor targeting ligand c(RGDfK). Once HAOP NP is selectively taken up by αvβ3 integrin-rich tumor cells, the intracellular H2O2 penetrates the shell into the core and is catalyzed by catalase to generate O2, leading to the shell rupture and release of photosensitizer. Under irradiation, the released photosensitizer induces the formation of cytotoxic singlet oxygen (1O2) in the presence of O2 to kill cancer cells. The cell-specific and H2O2-activatable generation of 1O2 selectively destroys cancer cells and prevents the damage to normal cells. More significantly, HAOP NP continuously generates O2 in PDT process, which greatly improves the PDT efficacy in hypoxic tumor. Therefore, this work presents a new paradigm for H2O2-triggered PDT against cancer cells and provides a new avenue for overcoming hypoxia to achieve effective treatment of solid tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI