声子
热导率
材料科学
凝聚态物理
散射
声子散射
玻尔兹曼方程
锗
热力学
物理
量子力学
硅
光电子学
出处
期刊:Physical Review
[American Physical Society]
日期:1959-02-15
卷期号:113 (4): 1046-1051
被引量:2763
标识
DOI:10.1103/physrev.113.1046
摘要
A phenomenological model is developed to facilitate calculation of lattice thermal conductivities at low temperatures. It is assumed that the phonon scattering processes can be represented by frequency-dependent relaxation times. Isotropy and absence of dispersion in the crystal vibration spectrum are assumed. No distinction is made between longitudinal and transverse phonons. The assumed scattering mechanisms are (1) point impurities (isotopes), (2) normal three-phonon processes, (3) umklapp processes, and (4) boundary scattering. A special investigation is made of the role of the normal processes which conserve the total crystal momentum and a formula is derived from the Boltzmann equation which gives their contribution to the conductivity. The relaxation time for the normal three-phonon processes is taken to be that calculated by Herring for longitudinal modes in cubic materials. The model predicts for germanium a thermal conductivity roughly proportional to ${T}^{\ensuremath{-}\frac{3}{2}}$ in normal material, but proportional to ${T}^{\ensuremath{-}2}$ in single-isotope material in the temperature range 50\ifmmode^\circ\else\textdegree\fi{}-100\ifmmode^\circ\else\textdegree\fi{}K. Magnitudes of the relaxation times are estimated from the experimental data. The thermal conductivity of germanium is calculated by numerical integration for the temperature range 2-100\ifmmode^\circ\else\textdegree\fi{}K. The results are in reasonably good agreement with the experimental results for normal and for single-isotope material.
科研通智能强力驱动
Strongly Powered by AbleSci AI