Model for Lattice Thermal Conductivity at Low Temperatures

声子 热导率 材料科学 凝聚态物理 散射 声子散射 玻尔兹曼方程 热力学 物理 量子力学 光电子学
作者
J. Callaway
出处
期刊:Physical Review [American Physical Society]
卷期号:113 (4): 1046-1051 被引量:2763
标识
DOI:10.1103/physrev.113.1046
摘要

A phenomenological model is developed to facilitate calculation of lattice thermal conductivities at low temperatures. It is assumed that the phonon scattering processes can be represented by frequency-dependent relaxation times. Isotropy and absence of dispersion in the crystal vibration spectrum are assumed. No distinction is made between longitudinal and transverse phonons. The assumed scattering mechanisms are (1) point impurities (isotopes), (2) normal three-phonon processes, (3) umklapp processes, and (4) boundary scattering. A special investigation is made of the role of the normal processes which conserve the total crystal momentum and a formula is derived from the Boltzmann equation which gives their contribution to the conductivity. The relaxation time for the normal three-phonon processes is taken to be that calculated by Herring for longitudinal modes in cubic materials. The model predicts for germanium a thermal conductivity roughly proportional to ${T}^{\ensuremath{-}\frac{3}{2}}$ in normal material, but proportional to ${T}^{\ensuremath{-}2}$ in single-isotope material in the temperature range 50\ifmmode^\circ\else\textdegree\fi{}-100\ifmmode^\circ\else\textdegree\fi{}K. Magnitudes of the relaxation times are estimated from the experimental data. The thermal conductivity of germanium is calculated by numerical integration for the temperature range 2-100\ifmmode^\circ\else\textdegree\fi{}K. The results are in reasonably good agreement with the experimental results for normal and for single-isotope material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liuqian完成签到,获得积分10
1秒前
Hou完成签到 ,获得积分10
1秒前
反杀闰土的猹完成签到 ,获得积分20
1秒前
所所应助cc采纳,获得10
2秒前
邵裘完成签到,获得积分10
2秒前
丘比特应助yin采纳,获得10
2秒前
3秒前
3秒前
3秒前
希望天下0贩的0应助sss采纳,获得20
3秒前
拼搏向前发布了新的文献求助10
3秒前
紫罗兰花海完成签到 ,获得积分10
4秒前
琪琪完成签到,获得积分10
5秒前
5秒前
爆米花应助高兴藏花采纳,获得10
5秒前
orixero应助Rrr采纳,获得10
5秒前
6秒前
张今天也要做科研呀完成签到,获得积分10
6秒前
humorlife完成签到,获得积分10
6秒前
打打应助给我找采纳,获得10
7秒前
酷波er应助谦让的含海采纳,获得10
7秒前
7秒前
shrike发布了新的文献求助10
7秒前
心灵美半邪完成签到 ,获得积分10
9秒前
wanci应助星晴遇见花海采纳,获得10
9秒前
9秒前
MILL完成签到,获得积分20
9秒前
卡卡发布了新的文献求助10
9秒前
今后应助九城采纳,获得10
10秒前
10秒前
我是125应助凶狠的乐巧采纳,获得10
10秒前
10秒前
开心的火龙果完成签到,获得积分10
11秒前
科研通AI2S应助长夜变清早采纳,获得10
11秒前
su发布了新的文献求助10
11秒前
明理的访风完成签到,获得积分10
11秒前
小马哥完成签到,获得积分10
12秒前
12秒前
jy发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794