摘要
The mitogen-activated protein kinase (MAPK) family includes the p38 kinases, which consist of highly conserved proline-directed serine-threonine protein kinases that are activated in response to inflammatory signals. Of the four isoforms, p38α is the most abundant in inflammatory cells and has been the most studied through mainly the availability of small molecule inhibitors. The p38 substrates include transcription factors; other protein kinases, which in turn phosphorylate transcription factors; cytoskeletal proteins and translational components; and other enzymes. Both asthma and COPD are characterized by chronic airflow obstruction, airway and lung remodeling, and chronic inflammation. p38 is involved in the inflammatory responses induced by cigarette smoke exposure, endotoxin, and oxidative stress through activation and release of proinflammatory cytokines/chemokines, posttranslational regulation of these genes, and activation of inflammatory cell migration. Inhibition of p38 MAPK prevented allergen-induced pulmonary eosinophilia, mucus hypersecretion, and airway hyperresponsiveness, effects that may partly result from p38 activation on eosinophil apoptosis and on airway smooth muscle cell production of cytokines/chemokines. In addition, p38 regulates the augmented contractile response induced by oxidative stress. The activation of p38 observed in epithelial cells and macrophages also may underlie corticosteroid insensitivity of severe asthma and COPD. Therefore, p38 inhibitors present a potential attractive treatment of these conditions. Second-generation p38 inhibitors have been disappointing in the treatment of rheumatoid arthritis. In two 6-week studies in patients with COPD, the results were encouraging. Side effects such as liver toxicity remain a possibility, and whether the beneficial effects of p38 inhibitors are clinically significant and sustained need to be determined. The mitogen-activated protein kinase (MAPK) family includes the p38 kinases, which consist of highly conserved proline-directed serine-threonine protein kinases that are activated in response to inflammatory signals. Of the four isoforms, p38α is the most abundant in inflammatory cells and has been the most studied through mainly the availability of small molecule inhibitors. The p38 substrates include transcription factors; other protein kinases, which in turn phosphorylate transcription factors; cytoskeletal proteins and translational components; and other enzymes. Both asthma and COPD are characterized by chronic airflow obstruction, airway and lung remodeling, and chronic inflammation. p38 is involved in the inflammatory responses induced by cigarette smoke exposure, endotoxin, and oxidative stress through activation and release of proinflammatory cytokines/chemokines, posttranslational regulation of these genes, and activation of inflammatory cell migration. Inhibition of p38 MAPK prevented allergen-induced pulmonary eosinophilia, mucus hypersecretion, and airway hyperresponsiveness, effects that may partly result from p38 activation on eosinophil apoptosis and on airway smooth muscle cell production of cytokines/chemokines. In addition, p38 regulates the augmented contractile response induced by oxidative stress. The activation of p38 observed in epithelial cells and macrophages also may underlie corticosteroid insensitivity of severe asthma and COPD. Therefore, p38 inhibitors present a potential attractive treatment of these conditions. Second-generation p38 inhibitors have been disappointing in the treatment of rheumatoid arthritis. In two 6-week studies in patients with COPD, the results were encouraging. Side effects such as liver toxicity remain a possibility, and whether the beneficial effects of p38 inhibitors are clinically significant and sustained need to be determined.