[Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum].

血管 解剖 静脉曲张 医学 静脉 血管 静脉瓣膜 动脉壁 心脏病学 内科学 外科
作者
G. Maurice,X Wang,Bertrand Lehalle,J.F. Stoltz
出处
期刊:PubMed 卷期号:23 (4): 282-8 被引量:9
链接
标识
摘要

As in most living tissues, a network of nutritional vessels, the so-called vasa vasorum, irrigates the vessel wall under physiological conditions. An alteration or obstruction of this network can induce severe lesions. Most normal arteries and veins are irrigated by a vasa vasorum network located mainly in the adventice. They essentially supply oxygen to the outer layers of the vascular wall, the inner layer being mainly oxygenated by direct diffusion from bloodstream. Vasa vasorum responds to vasomotor stimuli and can even regress, e.g., after vascularization of arterial grafts. Their pathophysiological importance for arteries is now established. Indeed, it is known that an infusion disorder or vasa vasorum alteration may induce or promote early atherosclerotic lesions, fibrodysplasia or even media necrosis. From a mechanical point of view, and considering the three layers as a unique material, the vessel shows non-isotropic linear elastic and incompressible (v = 0.5) behaviour in the case of minimal or moderate deformation. But in the case of major deformation, the vessel displays a non-linear behaviour. The interaction between vasa vasorum supply and the mechanical properties of the arterial vascular wall can promote the occurrence of aneurysms as soon as vasa vasorum irrigation decreases. Some authors have hypothesized that these microvessels could fulfil the same function in the venous wall. It appears also that microcirculation flow rates are lower in varicose veins than in healthy ones and that partial oxygen pressure, already low in a healthy vein media, is even lower in a varicose vein. All these facts underline the importance of supply by the vasa vasorum network and its determining role in maintaining vascular wall integrity. In addition, the influence of vessel non-linear properties and their pathological changes on microcirculation would partially explain media necrosis in arteries and veins. Studying vascular wall deformation under the influence of intraluminal pressure revealed that an initially circular vasa vasorum rapidly takes on an elliptical shape which results more from crosswise circumferential stretching of the wall than from radial crushing. This induces increased hydraulic resistance. Thus permanent overpressure reduces vascular wall irrigation. Once the wall has been devascularized, it will loose its elasticity, harden and retain its maximal deformation. A vicious circle is then created. This phenomenon, noticeable in arteries, could be more serious in veins because their walls are thinner and elasticity modulus is lower. For example, for an intraluminal overpressure of 100 mmHg in an artery and 10 mmHg in a vein the ellipticity of the vasa vasorum becomes 1.2 and 3 respectively. Based on the hypothesis of a linear elastic behaviour and a periodical intraluminal overpressure, the ratio of the two axis of an arterial vasa vasorum B/A varies from 1.13 to 1.28 for Pa = 100 + 30 sin (2 pi t) mmHg, and from 1.24 to 1.44 for Pa = 160 + 40 sin (2 pi t) mmHg. In this case, the ratio of hydraulic resistances R(ellipse)/R(circle) changes little (less than 1, the ratio of the axis varies from 1.1 to 2.6 for Pa = 5 + 5 sin (2 pi t) mmHg) and from 1.8 to 5.8 for Pa = 10 + 5 sin (2 pi t) mmHg). Thus the ratio of hydraulic resistance varies from 1 to 1.5 and from 1.2 to 2.8 respectively. In practice Young's modulus increases in parallel with luminal pressure by limiting vascular wall and vasa vasorum deformation. If we consider the non-linear behaviour of the vessel wall and suppose the same conditions of intraluminal pressure, the ratio of the axis of the venous vasa vasorum in a hypertensive patient varies from 1.6 to 2.6 (instead of 1.8 to 5.8 in the case of linear model). This ratio is higher than that of the healthy subject which is less than 1.7. So the vascular structure in physiological conditions itself reacts to the pressure increases which may jeopardize vasa vasorum irrigation by delaying mural transfor

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adam发布了新的文献求助10
1秒前
陈祥完成签到,获得积分10
1秒前
NexusExplorer应助俏皮的白柏采纳,获得10
1秒前
2秒前
2秒前
深情安青应助未道采纳,获得10
2秒前
6秒前
txy完成签到,获得积分10
6秒前
6秒前
6秒前
han应助甜蜜的物语采纳,获得10
7秒前
Ava应助大方小白采纳,获得10
8秒前
路十三发布了新的文献求助10
8秒前
猪猪hero发布了新的文献求助20
9秒前
zfj发布了新的文献求助10
9秒前
湛一发布了新的文献求助10
9秒前
GAN发布了新的文献求助10
9秒前
熊囧囧完成签到,获得积分10
9秒前
小七完成签到,获得积分10
11秒前
倪小呆发布了新的文献求助10
11秒前
酷波er应助顺利秋灵采纳,获得10
11秒前
12秒前
14秒前
孙福禄应助Yy采纳,获得10
15秒前
乐依李完成签到,获得积分10
15秒前
16秒前
H..完成签到,获得积分20
16秒前
18秒前
心灵完成签到 ,获得积分10
19秒前
小蘑菇应助高高采纳,获得10
19秒前
20秒前
湛一完成签到,获得积分10
20秒前
呆二龙发布了新的文献求助10
20秒前
lijia3完成签到,获得积分10
20秒前
bkagyin应助xiaolaohu采纳,获得10
21秒前
21秒前
华仔应助hahhh7采纳,获得10
21秒前
大王完成签到,获得积分20
22秒前
FashionBoy应助xiangoak采纳,获得10
22秒前
赘婿应助画个饼充饥采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021