[Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum].

血管 解剖 静脉曲张 医学 静脉 血管 静脉瓣膜 动脉壁 心脏病学 内科学 外科
作者
G. Maurice,X Wang,Bertrand Lehalle,J.F. Stoltz
出处
期刊:PubMed 卷期号:23 (4): 282-8 被引量:9
链接
标识
摘要

As in most living tissues, a network of nutritional vessels, the so-called vasa vasorum, irrigates the vessel wall under physiological conditions. An alteration or obstruction of this network can induce severe lesions. Most normal arteries and veins are irrigated by a vasa vasorum network located mainly in the adventice. They essentially supply oxygen to the outer layers of the vascular wall, the inner layer being mainly oxygenated by direct diffusion from bloodstream. Vasa vasorum responds to vasomotor stimuli and can even regress, e.g., after vascularization of arterial grafts. Their pathophysiological importance for arteries is now established. Indeed, it is known that an infusion disorder or vasa vasorum alteration may induce or promote early atherosclerotic lesions, fibrodysplasia or even media necrosis. From a mechanical point of view, and considering the three layers as a unique material, the vessel shows non-isotropic linear elastic and incompressible (v = 0.5) behaviour in the case of minimal or moderate deformation. But in the case of major deformation, the vessel displays a non-linear behaviour. The interaction between vasa vasorum supply and the mechanical properties of the arterial vascular wall can promote the occurrence of aneurysms as soon as vasa vasorum irrigation decreases. Some authors have hypothesized that these microvessels could fulfil the same function in the venous wall. It appears also that microcirculation flow rates are lower in varicose veins than in healthy ones and that partial oxygen pressure, already low in a healthy vein media, is even lower in a varicose vein. All these facts underline the importance of supply by the vasa vasorum network and its determining role in maintaining vascular wall integrity. In addition, the influence of vessel non-linear properties and their pathological changes on microcirculation would partially explain media necrosis in arteries and veins. Studying vascular wall deformation under the influence of intraluminal pressure revealed that an initially circular vasa vasorum rapidly takes on an elliptical shape which results more from crosswise circumferential stretching of the wall than from radial crushing. This induces increased hydraulic resistance. Thus permanent overpressure reduces vascular wall irrigation. Once the wall has been devascularized, it will loose its elasticity, harden and retain its maximal deformation. A vicious circle is then created. This phenomenon, noticeable in arteries, could be more serious in veins because their walls are thinner and elasticity modulus is lower. For example, for an intraluminal overpressure of 100 mmHg in an artery and 10 mmHg in a vein the ellipticity of the vasa vasorum becomes 1.2 and 3 respectively. Based on the hypothesis of a linear elastic behaviour and a periodical intraluminal overpressure, the ratio of the two axis of an arterial vasa vasorum B/A varies from 1.13 to 1.28 for Pa = 100 + 30 sin (2 pi t) mmHg, and from 1.24 to 1.44 for Pa = 160 + 40 sin (2 pi t) mmHg. In this case, the ratio of hydraulic resistances R(ellipse)/R(circle) changes little (less than 1, the ratio of the axis varies from 1.1 to 2.6 for Pa = 5 + 5 sin (2 pi t) mmHg) and from 1.8 to 5.8 for Pa = 10 + 5 sin (2 pi t) mmHg). Thus the ratio of hydraulic resistance varies from 1 to 1.5 and from 1.2 to 2.8 respectively. In practice Young's modulus increases in parallel with luminal pressure by limiting vascular wall and vasa vasorum deformation. If we consider the non-linear behaviour of the vessel wall and suppose the same conditions of intraluminal pressure, the ratio of the axis of the venous vasa vasorum in a hypertensive patient varies from 1.6 to 2.6 (instead of 1.8 to 5.8 in the case of linear model). This ratio is higher than that of the healthy subject which is less than 1.7. So the vascular structure in physiological conditions itself reacts to the pressure increases which may jeopardize vasa vasorum irrigation by delaying mural transfor

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
C陈完成签到,获得积分10
2秒前
3秒前
suger发布了新的文献求助10
4秒前
5秒前
干雅柏完成签到,获得积分10
6秒前
八九完成签到,获得积分10
7秒前
8秒前
干雅柏发布了新的文献求助10
9秒前
Stardust发布了新的文献求助10
9秒前
黑白和完成签到 ,获得积分10
10秒前
yang完成签到,获得积分10
11秒前
金蛋蛋发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
18秒前
23秒前
淡定的电源完成签到,获得积分10
26秒前
26秒前
lm发布了新的文献求助10
29秒前
31秒前
善学以致用应助孤独问旋采纳,获得10
31秒前
孙燕应助霸气安筠采纳,获得30
32秒前
李健应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
SYLH应助科研通管家采纳,获得20
32秒前
SYLH应助科研通管家采纳,获得10
32秒前
上官若男应助科研通管家采纳,获得10
32秒前
烟花应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
SYLH应助科研通管家采纳,获得10
33秒前
CAOHOU应助科研通管家采纳,获得10
33秒前
SYLH应助科研通管家采纳,获得10
33秒前
CAOHOU应助科研通管家采纳,获得10
33秒前
SYLH应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
ding应助科研通管家采纳,获得10
33秒前
33秒前
SYLH应助科研通管家采纳,获得10
33秒前
CAOHOU应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173