An automatic mobile-health based approach for EEG epileptic seizures detection

计算机科学 脑电图 人工智能 癫痫发作 特征选择 分类器(UML) 可扩展性 机器学习 模式识别(心理学) 特征提取 数据挖掘 数据库 心理学 精神科
作者
Mohamed El Menshawy,Abdelghani Benharref,Mohamed Adel Serhani
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:42 (20): 7157-7174 被引量:57
标识
DOI:10.1016/j.eswa.2015.04.068
摘要

In this article, we develop a comprehensive mobile-based approach, which is able to perform the essential processes needed to automatically analyze and detect epileptic seizures using the information contained in electroencephalography (EEG) signals. We first develop and implement an appropriate combination of different algorithms that resample, smooth, remove artifacts, and constantly and adaptively segment signals to prepare them for further processing. We then improve and fully implement a large variety of features introduced in the literature of epileptic seizures detection. We also select the relevant features to reduce a feature vector space and improve the classification process by developing two automated filter and wrapper selection algorithms. We thoroughly compare between these selection algorithms in terms of redundant features, execution time and classification accuracy through three experiments. We subsequently exploit the selected features as input to a machine learning classifier to detect epileptic seizure states in a reasonable time. We experimentally and theoretically evaluate the scalability of the whole algorithm respectively on patients’ data available in standard clinical database and on 500 EEG recordings including 500 seizures. Having efficient and scabble algorithm, we develop two extra algorithms to dynamically acquire and transmit EEG signals from wireless sensors attached to patients and to visualize on mobile devices the obtained processing and analysis results. We finally integrate all our algorithms together along with an android mobile application to implement an effective mobile-based EEG monitoring system where its accuracy is tested on live EEG data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的大开完成签到,获得积分10
刚刚
刚刚
1秒前
BPX完成签到,获得积分10
1秒前
病理小甜甜完成签到,获得积分10
1秒前
瘦瘦的小蘑菇完成签到,获得积分10
1秒前
伶俐的迎丝完成签到,获得积分20
1秒前
ZSM911发布了新的文献求助10
2秒前
琅琊稳重的团子完成签到,获得积分10
2秒前
annaanna完成签到,获得积分10
2秒前
Cheney完成签到,获得积分10
3秒前
3秒前
灿烂完成签到,获得积分10
3秒前
彭于彦祖完成签到,获得积分0
3秒前
wenjingluo完成签到 ,获得积分10
3秒前
4秒前
淡然丹妗完成签到,获得积分10
4秒前
4秒前
5秒前
可可萝oxo发布了新的文献求助10
5秒前
稳重立辉完成签到,获得积分10
5秒前
智慧吗喽完成签到,获得积分10
5秒前
6秒前
徐婷完成签到,获得积分10
6秒前
7秒前
hehehe完成签到,获得积分10
7秒前
淡然丹妗发布了新的文献求助10
7秒前
applelpypies完成签到 ,获得积分0
8秒前
9秒前
那啥发布了新的文献求助10
9秒前
流沙发布了新的文献求助10
9秒前
zyfzyf完成签到,获得积分10
10秒前
不可思宇发布了新的文献求助10
10秒前
昊昊完成签到,获得积分10
10秒前
王灿灿发布了新的文献求助10
10秒前
在水一方应助Elio采纳,获得30
10秒前
慕青应助DQ采纳,获得10
11秒前
jyyg完成签到,获得积分20
11秒前
乐乐应助斯文的傲珊采纳,获得10
11秒前
joshar完成签到,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443