An automatic mobile-health based approach for EEG epileptic seizures detection

计算机科学 脑电图 人工智能 癫痫发作 特征选择 分类器(UML) 可扩展性 机器学习 模式识别(心理学) 特征提取 数据挖掘 数据库 心理学 精神科
作者
Mohamed El Menshawy,Abdelghani Benharref,Mohamed Adel Serhani
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:42 (20): 7157-7174 被引量:57
标识
DOI:10.1016/j.eswa.2015.04.068
摘要

In this article, we develop a comprehensive mobile-based approach, which is able to perform the essential processes needed to automatically analyze and detect epileptic seizures using the information contained in electroencephalography (EEG) signals. We first develop and implement an appropriate combination of different algorithms that resample, smooth, remove artifacts, and constantly and adaptively segment signals to prepare them for further processing. We then improve and fully implement a large variety of features introduced in the literature of epileptic seizures detection. We also select the relevant features to reduce a feature vector space and improve the classification process by developing two automated filter and wrapper selection algorithms. We thoroughly compare between these selection algorithms in terms of redundant features, execution time and classification accuracy through three experiments. We subsequently exploit the selected features as input to a machine learning classifier to detect epileptic seizure states in a reasonable time. We experimentally and theoretically evaluate the scalability of the whole algorithm respectively on patients’ data available in standard clinical database and on 500 EEG recordings including 500 seizures. Having efficient and scabble algorithm, we develop two extra algorithms to dynamically acquire and transmit EEG signals from wireless sensors attached to patients and to visualize on mobile devices the obtained processing and analysis results. We finally integrate all our algorithms together along with an android mobile application to implement an effective mobile-based EEG monitoring system where its accuracy is tested on live EEG data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ipeakkka采纳,获得10
1秒前
852应助章家炜采纳,获得10
2秒前
Gauss应助张小汉采纳,获得30
4秒前
嘻嘻发布了新的文献求助10
4秒前
杰哥完成签到 ,获得积分10
5秒前
Ava应助赵小可可可可采纳,获得10
5秒前
科研通AI5应助kento采纳,获得30
6秒前
nkmenghan发布了新的文献求助10
7秒前
10秒前
redondo10完成签到,获得积分0
11秒前
12秒前
乔qiao发布了新的文献求助30
15秒前
WZ0904发布了新的文献求助10
16秒前
poegtam完成签到,获得积分10
17秒前
大胆盼兰发布了新的文献求助10
18秒前
wuyan204完成签到 ,获得积分10
19秒前
windcreator完成签到,获得积分10
19秒前
redondo5完成签到,获得积分0
19秒前
wangrswjx完成签到 ,获得积分10
19秒前
科研通AI5应助su采纳,获得10
19秒前
22秒前
24秒前
小二郎应助嘻嘻采纳,获得10
24秒前
yun完成签到 ,获得积分10
25秒前
25秒前
27秒前
健忘曼冬发布了新的文献求助10
27秒前
redondo完成签到,获得积分10
27秒前
momo完成签到,获得积分10
28秒前
希望天下0贩的0应助meng采纳,获得10
29秒前
龙歪歪发布了新的文献求助10
30秒前
30秒前
暮城完成签到,获得积分10
30秒前
31秒前
云墨完成签到 ,获得积分10
31秒前
33秒前
34秒前
Akim应助caoyy采纳,获得10
34秒前
35秒前
科研通AI2S应助DreamMaker采纳,获得10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849