Predicting the Prognosis of MCI Patients Using Longitudinal MRI Data

计算机辅助设计 神经心理学 认知障碍 磁共振成像 纵向数据 纵向研究 雅可比矩阵与行列式 认知 医学 计算机科学 疾病 放射科 数据挖掘 内科学 病理 精神科 数学 工程制图 应用数学 工程类
作者
Fusun Citak Er,Dionysis Goularas
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (3): 1164-1173 被引量:19
标识
DOI:10.1109/tcbb.2020.3017872
摘要

The aim of this study is to develop a computer-aided diagnosis system with a deep-learning approach for distinguishing “Mild Cognitive Impairment (MCI) due to Alzheimer's Disease (AD)” patients among a list of MCI patients. In this system we are using the power of longitudinal data extracted from magnetic resonance (MR). For this work, a total of 294 MCI patients were selected from the ADNI database. Among them, 125 patients developed AD during their follow-up and the rest remained stable. The proposed computer-aided diagnosis system (CAD) attempts to identify brain regions that are significant for the prediction of developing AD. The longitudinal data were constructed using a 3D Jacobian-based method aiming to track the brain differences between two consecutive follow-ups. The proposed CAD system distinguishes MCI patients who developed AD from those who remained stable with an accuracy of 87.2 percent. Moreover, it does not depend on data acquired by invasive methods or cognitive tests. This work demonstrates that the use of data in different time periods contains information that is beneficial for prognosis prediction purposes that outperform similar methods and are slightly inferior only to those systems that use invasive methods or neuropsychological tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
12木完成签到,获得积分10
3秒前
馍夹菜完成签到,获得积分10
6秒前
6秒前
LiQi完成签到,获得积分10
6秒前
10秒前
科目三应助zhu采纳,获得10
14秒前
Shan发布了新的文献求助10
15秒前
16秒前
浮游应助闭眼听风雨采纳,获得10
17秒前
yyanxuemin919发布了新的文献求助10
18秒前
青葱鱼块完成签到 ,获得积分10
21秒前
浅沐发布了新的文献求助10
21秒前
3dyf发布了新的文献求助10
23秒前
24秒前
Keyto7应助Wenfeifei采纳,获得10
26秒前
丹D完成签到,获得积分10
27秒前
蒲云海发布了新的文献求助10
32秒前
32秒前
33秒前
33秒前
lessismore发布了新的文献求助10
35秒前
善学以致用应助kk采纳,获得10
35秒前
36秒前
37秒前
Ava应助合适的晓夏采纳,获得10
37秒前
38秒前
豆豆发布了新的文献求助10
38秒前
40秒前
dajiejie完成签到 ,获得积分10
41秒前
Keyto7应助Wenfeifei采纳,获得10
41秒前
42秒前
浮游应助楼梯口无头女孩采纳,获得10
42秒前
无辜之卉发布了新的文献求助10
43秒前
FJ发布了新的文献求助10
43秒前
大龙哥886应助科研通管家采纳,获得10
44秒前
BowieHuang应助科研通管家采纳,获得10
44秒前
小二郎应助科研通管家采纳,获得10
44秒前
44秒前
乐乐应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471