亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the Prognosis of MCI Patients Using Longitudinal MRI Data

计算机辅助设计 神经心理学 认知障碍 磁共振成像 纵向数据 纵向研究 雅可比矩阵与行列式 认知 医学 计算机科学 疾病 放射科 数据挖掘 内科学 病理 精神科 数学 工程制图 应用数学 工程类
作者
Fusun Citak Er,Dionysis Goularas
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (3): 1164-1173 被引量:19
标识
DOI:10.1109/tcbb.2020.3017872
摘要

The aim of this study is to develop a computer-aided diagnosis system with a deep-learning approach for distinguishing “Mild Cognitive Impairment (MCI) due to Alzheimer's Disease (AD)” patients among a list of MCI patients. In this system we are using the power of longitudinal data extracted from magnetic resonance (MR). For this work, a total of 294 MCI patients were selected from the ADNI database. Among them, 125 patients developed AD during their follow-up and the rest remained stable. The proposed computer-aided diagnosis system (CAD) attempts to identify brain regions that are significant for the prediction of developing AD. The longitudinal data were constructed using a 3D Jacobian-based method aiming to track the brain differences between two consecutive follow-ups. The proposed CAD system distinguishes MCI patients who developed AD from those who remained stable with an accuracy of 87.2 percent. Moreover, it does not depend on data acquired by invasive methods or cognitive tests. This work demonstrates that the use of data in different time periods contains information that is beneficial for prognosis prediction purposes that outperform similar methods and are slightly inferior only to those systems that use invasive methods or neuropsychological tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfaqing942完成签到 ,获得积分10
5秒前
7秒前
9秒前
George发布了新的文献求助10
13秒前
lemon发布了新的文献求助10
15秒前
wanci应助George采纳,获得10
22秒前
v哈哈完成签到 ,获得积分10
27秒前
sun给sun的求助进行了留言
30秒前
40秒前
sun给sun的求助进行了留言
51秒前
1分钟前
George发布了新的文献求助10
1分钟前
酷炫灰狼发布了新的文献求助10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
充电宝应助酷炫灰狼采纳,获得10
2分钟前
李爱国应助可靠的寒风采纳,获得10
2分钟前
TT完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
sun发布了新的文献求助10
2分钟前
林一发布了新的文献求助10
2分钟前
Hello应助雾里采纳,获得10
2分钟前
2分钟前
小二郎应助鳄鱼不做饿梦采纳,获得10
3分钟前
Criminology34应助林一采纳,获得10
3分钟前
3分钟前
酷炫灰狼发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
蜜汁章鱼丸完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399