Development and Cost Analysis of a Lung Nodule Management Strategy Combining Artificial Intelligence and Lung-RADS for Baseline Lung Cancer Screening

医学 肺癌 肺癌筛查 恶性肿瘤 队列 放射科 结核(地质) 人口 内科学 医学物理学 古生物学 生物 环境卫生
作者
Scott Adams,Prosanta Mondal,Erika Penz,Chung-Chun Tyan,Hyun Ju Lim,Paul Babyn
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:18 (5): 741-751 被引量:24
标识
DOI:10.1016/j.jacr.2020.11.014
摘要

Abstract Objectives To develop a lung nodule management strategy combining the Lung CT Screening Reporting and Data System (Lung-RADS) with an artificial intelligence (AI) malignancy risk score and determine its impact on follow-up investigations and associated costs in a baseline lung cancer screening population. Materials and Methods Secondary analysis was undertaken of a data set consisting of AI malignancy risk scores and Lung-RADS classifications from six radiologists for 192 baseline low-dose CT studies. Low-dose CT studies were weighted to model a representative cohort of 3,197 baseline screening patients. An AI risk score threshold was defined to match average sensitivity of six radiologists applying Lung-RADS. Cases initially Lung-RADS category 1 or 2 with a high AI risk score were upgraded to category 3, and cases initially category 3 or higher with a low AI risk score were downgraded to category 2. Follow-up investigations resulting from Lung-RADS and the AI-informed management strategy were determined. Investigation costs were based on the 2019 US Medicare Physician Fee Schedule. Results The AI-informed management strategy achieved sensitivity and specificity of 91% and 96%, respectively. Average sensitivity and specificity of six radiologists using Lung-RADS only was 91% and 66%, respectively. Using the AI-informed management strategy, 41 (0.2%) category 1 or 2 classifications were upgraded to category 3, and 5,750 (30%) category 3 or higher classifications were downgraded to category 2. Minimum net cost savings using the AI-informed management strategy was estimated to be $72 per patient screened. Conclusion Using an AI risk score combined with Lung-RADS at baseline lung cancer screening may result in fewer follow-up investigations and substantial cost savings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静秋柔完成签到,获得积分10
1秒前
悦耳若云发布了新的文献求助10
1秒前
YUU发布了新的文献求助10
1秒前
顾矜应助lili采纳,获得10
2秒前
月色完成签到,获得积分10
2秒前
2秒前
彭于晏应助ah爱科研采纳,获得10
2秒前
2秒前
2秒前
shinubi发布了新的文献求助10
2秒前
4秒前
liuran完成签到,获得积分10
4秒前
4秒前
鄂问玉发布了新的文献求助10
6秒前
6秒前
悦耳若云完成签到,获得积分20
6秒前
桐桐应助juckblack采纳,获得10
6秒前
包容的奇异果完成签到,获得积分10
6秒前
7秒前
深情板凳发布了新的文献求助10
7秒前
活力凡雁发布了新的文献求助10
8秒前
江小北发布了新的文献求助10
8秒前
龙1发布了新的文献求助10
9秒前
zwenng发布了新的文献求助10
9秒前
9秒前
Orange应助WX采纳,获得10
9秒前
orixero应助旺旺碎冰冰采纳,获得10
9秒前
10秒前
芒果也疯狂完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
13秒前
小林太郎应助想飞的猪采纳,获得20
13秒前
领导范儿应助ml采纳,获得10
14秒前
哈好好哈哈好完成签到,获得积分10
14秒前
xuyingtao发布了新的文献求助10
15秒前
011235813发布了新的文献求助10
16秒前
乔遇完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961