Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy

光学相干层析成像 计算机科学 人工智能 深度学习 眼底(子宫) 糖尿病性视网膜病变 模式识别(心理学) 医学影像学 情态动词 机器学习 监督学习 视网膜 医学 人工神经网络 眼科 内分泌学 化学 高分子化学 糖尿病
作者
Olle Holmberg,Niklas Köhler,Thiago Gonçalves dos Santos Martins,Jakob Siedlecki,Tina Herold,Leonie Keidel,Ben Asani,Johannes Schiefelbein,Siegfried Priglinger,Karsten Kortuem,Fabian J. Theis
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (11): 719-726 被引量:75
标识
DOI:10.1038/s42256-020-00247-1
摘要

Access to large, annotated samples represents a considerable challenge for training accurate deep-learning models in medical imaging. Although at present transfer learning from pre-trained models can help with cases lacking data, this limits design choices and generally results in the use of unnecessarily large models. Here we propose a self-supervised training scheme for obtaining high-quality, pre-trained networks from unlabelled, cross-modal medical imaging data, which will allow the creation of accurate and efficient models. We demonstrate the utility of the scheme by accurately predicting retinal thickness measurements based on optical coherence tomography from simple infrared fundus images. Subsequently, learned representations outperformed advanced classifiers on a separate diabetic retinopathy classification task in a scenario of scarce training data. Our cross-modal, three-stage scheme effectively replaced 26,343 diabetic retinopathy annotations with 1,009 semantic segmentations on optical coherence tomography and reached the same classification accuracy using only 25% of fundus images, without any drawbacks, since optical coherence tomography is not required for predictions. We expect this concept to apply to other multimodal clinical imaging, health records and genomics data, and to corresponding sample-starved learning problems. The thickness of the retina is an important medical indicator for diabetic retinopathy. Holmberg and colleagues present a self-supervised deep-learning method that uses cross-modal data to predict retinal thickness maps from easily obtainable fundus images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei完成签到,获得积分10
刚刚
刚刚
Qinruirui完成签到,获得积分10
刚刚
Owen应助xia采纳,获得10
刚刚
ddy完成签到,获得积分10
1秒前
zmy发布了新的文献求助10
1秒前
鳗鱼厉发布了新的文献求助10
1秒前
孤存完成签到 ,获得积分10
1秒前
zho关闭了zho文献求助
1秒前
2秒前
4秒前
aaashirz_完成签到,获得积分10
4秒前
科研通AI2S应助风中寄云采纳,获得10
4秒前
coffeecup1完成签到,获得积分10
6秒前
萌萌许完成签到,获得积分10
6秒前
6秒前
斯文鸡完成签到,获得积分10
7秒前
萌萌完成签到,获得积分10
8秒前
sallltyyy完成签到,获得积分10
8秒前
VV完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
coffeecup1发布了新的文献求助10
10秒前
小飞完成签到,获得积分10
11秒前
牛文文完成签到,获得积分10
11秒前
GZX完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
gaga关注了科研通微信公众号
13秒前
搜集达人应助阿敏采纳,获得10
13秒前
13秒前
复杂瑛发布了新的文献求助10
14秒前
在水一方应助不对也没错采纳,获得10
14秒前
小飞发布了新的文献求助30
15秒前
15秒前
豪哥大大完成签到,获得积分10
16秒前
16秒前
汉堡包应助神勇的曼文采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794