Damage-Map Estimation Using UAV Images and Deep Learning Algorithms for Disaster Management System

计算机科学 稳健性(进化) 航空影像 深度学习 人工智能 分割 遥感 职位(财务) 计算机视觉 图像(数学) 地理 财务 生物化学 基因 经济 化学
作者
Dai Quoc Tran,Minsoo Park,Daekyo Jung,Seunghee Park
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (24): 4169-4169 被引量:50
标识
DOI:10.3390/rs12244169
摘要

Estimating the damaged area after a forest fire is important for responding to this natural catastrophe. With the support of aerial remote sensing, typically with unmanned aerial vehicles (UAVs), the aerial imagery of forest-fire areas can be easily obtained; however, retrieving the burnt area from the image is still a challenge. We implemented a new approach for segmenting burnt areas from UAV images using deep learning algorithms. First, the data were collected from a forest fire in Andong, the Republic of Korea, in April 2020. Then, the proposed two-patch-level deep-learning models were implemented. A patch-level 1 network was trained using the UNet++ architecture. The output prediction of this network was used as a position input for the second network, which used UNet. It took the reference position from the first network as its input and refined the results. Finally, the final performance of our proposed method was compared with a state-of-the-art image-segmentation algorithm to prove its robustness. Comparative research on the loss functions was also performed. Our proposed approach demonstrated its effectiveness in extracting burnt areas from UAV images and can contribute to estimating maps showing the areas damaged by forest fires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZOE应助乘风破浪采纳,获得10
1秒前
fan发布了新的文献求助10
3秒前
4秒前
4秒前
李爱国应助科研小王采纳,获得10
4秒前
neverflunk发布了新的文献求助10
5秒前
阿翼发布了新的文献求助10
5秒前
瑾木发布了新的文献求助10
5秒前
我是老大应助浅听风吟采纳,获得10
5秒前
李瑞康发布了新的文献求助10
5秒前
Zgf发布了新的文献求助10
6秒前
鹤烟完成签到,获得积分10
6秒前
6秒前
6秒前
Ruiss发布了新的文献求助10
6秒前
sumugeng完成签到,获得积分10
7秒前
7秒前
7秒前
abcd完成签到 ,获得积分10
7秒前
honey发布了新的文献求助10
7秒前
7秒前
含糊的衬衫完成签到 ,获得积分20
8秒前
fan完成签到,获得积分10
8秒前
咩咩发布了新的文献求助10
8秒前
丘比特应助ll采纳,获得10
8秒前
9秒前
wanci应助背后的觅露采纳,获得10
9秒前
Ce发布了新的文献求助10
9秒前
asheng完成签到,获得积分10
10秒前
陈瑞鸥完成签到,获得积分10
10秒前
10秒前
打打应助Lws采纳,获得10
10秒前
10秒前
神经递质发布了新的文献求助10
10秒前
洁净的汽车完成签到 ,获得积分10
11秒前
啦啦累发布了新的文献求助30
11秒前
乘风破浪完成签到,获得积分10
11秒前
简单茗发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940082
求助须知:如何正确求助?哪些是违规求助? 4206266
关于积分的说明 13073713
捐赠科研通 3984859
什么是DOI,文献DOI怎么找? 2181904
邀请新用户注册赠送积分活动 1197544
关于科研通互助平台的介绍 1109846