基态
无穷
物理
班级(哲学)
薛定谔方程
数学物理
国家(计算机科学)
数学分析
组合数学
数学
量子力学
算法
计算机科学
人工智能
作者
Zhouxin Li,Yimin Zhang
出处
期刊:Communications on Pure and Applied Analysis
[American Institute of Mathematical Sciences]
日期:2021-01-01
卷期号:20 (2): 933-954
被引量:3
摘要
In this paper, we study a class of quasilinear Schrödinger equation of the form \begin{document}$ -\varepsilon^2\Delta u+V(x)u-\varepsilon^2(\Delta(|u|^{2}))u = K(x)|u|^{q-2}u,\quad x\in{\mathbb{R}^N}, $\end{document} where $ V $, $ K $ are smooth functions and $ V $ may vanish at infinity, $ 2<q<2(2^*) $. We prove the existence of a positive ground state solution which possesses a unique local maximum and decays exponentially.
科研通智能强力驱动
Strongly Powered by AbleSci AI