Modeling Product’s Visual and Functional Characteristics for Recommender Systems

计算机科学 推荐系统 产品(数学) 领域(数学分析) 协同过滤 情报检索 服装 相关性(法律) 概率逻辑 人工智能 人机交互 数学 历史 法学 考古 数学分析 几何学 政治学
作者
Bin Wu,Xiangnan He,Yun Chen,Liqiang Nie,Kai Zheng,Yangdong Ye
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (3): 1330-1343 被引量:16
标识
DOI:10.1109/tkde.2020.2991793
摘要

An effective recommender system can significantly help customers to find desired products and assist business owners to earn more income. Nevertheless, the decision-making process of users is highly complex, not only dependent on the personality and preference of a user, but also complicated by the characteristics of a specific product. For example, for products of different domains (e.g., clothing versus office products), the product aspects that affect a user’s decision are very different. As such, traditional collaborative filtering methods that model only user-item interaction data would deliver unsatisfactory recommendation results. In this work, we focus on fine-grained modeling of product characteristics to improve recommendation quality. Specifically, we first divide a product’s characteristics into visual and functional aspects—i.e., the visual appearance and functionality of the product. One insight is that, the visual characteristic is very important for products of visually-aware domain (e.g., clothing), while the functional characteristic plays a more crucial role for visually non-aware domain (e.g., office products). We then contribute a novel probabilistic model, named Visual and Functional Probabilistic Matrix Factorization (VFPMF), to unify the two factors to estimate user preferences on products. Nevertheless, such an expressive model poses efficiency challenge in parameter learning from implicit feedback. To address the technical challenge, we devise a computationally efficient learning algorithm based on alternating least squares. Furthermore, we provide an online updating procedure of the algorithm, shedding some light on how to adapt our method to real-world recommendation scenario where data continuously streams in. Extensive experiments on four real-word datasets demonstrate the effectiveness of our method with both offline and online protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得20
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
木木应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
芒果好高发布了新的文献求助10
5秒前
7秒前
7秒前
8秒前
8秒前
9秒前
10秒前
小盘子完成签到,获得积分10
11秒前
李繁蕊完成签到,获得积分10
11秒前
11秒前
酷波er应助mashichuang采纳,获得10
11秒前
color发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007