Modeling Product’s Visual and Functional Characteristics for Recommender Systems

计算机科学 推荐系统 产品(数学) 领域(数学分析) 协同过滤 情报检索 服装 相关性(法律) 概率逻辑 人工智能 人机交互 数学 历史 法学 考古 数学分析 几何学 政治学
作者
Bin Wu,Xiangnan He,Yun Chen,Liqiang Nie,Kai Zheng,Yangdong Ye
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1330-1343 被引量:16
标识
DOI:10.1109/tkde.2020.2991793
摘要

An effective recommender system can significantly help customers to find desired products and assist business owners to earn more income. Nevertheless, the decision-making process of users is highly complex, not only dependent on the personality and preference of a user, but also complicated by the characteristics of a specific product. For example, for products of different domains (e.g., clothing versus office products), the product aspects that affect a user’s decision are very different. As such, traditional collaborative filtering methods that model only user-item interaction data would deliver unsatisfactory recommendation results. In this work, we focus on fine-grained modeling of product characteristics to improve recommendation quality. Specifically, we first divide a product’s characteristics into visual and functional aspects—i.e., the visual appearance and functionality of the product. One insight is that, the visual characteristic is very important for products of visually-aware domain (e.g., clothing), while the functional characteristic plays a more crucial role for visually non-aware domain (e.g., office products). We then contribute a novel probabilistic model, named Visual and Functional Probabilistic Matrix Factorization (VFPMF), to unify the two factors to estimate user preferences on products. Nevertheless, such an expressive model poses efficiency challenge in parameter learning from implicit feedback. To address the technical challenge, we devise a computationally efficient learning algorithm based on alternating least squares. Furthermore, we provide an online updating procedure of the algorithm, shedding some light on how to adapt our method to real-world recommendation scenario where data continuously streams in. Extensive experiments on four real-word datasets demonstrate the effectiveness of our method with both offline and online protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任生平发布了新的文献求助10
2秒前
星辰大海应助无心采纳,获得10
2秒前
乐乐洛洛完成签到,获得积分10
2秒前
jing完成签到,获得积分10
2秒前
2秒前
SciGPT应助娟儿采纳,获得10
2秒前
3秒前
ya完成签到 ,获得积分10
3秒前
5秒前
HDW发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
曾建完成签到 ,获得积分10
6秒前
6秒前
徐欣然关注了科研通微信公众号
6秒前
专业美女制造完成签到,获得积分10
7秒前
斯文败类应助kelvin采纳,获得30
7秒前
7秒前
kite完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
NexusExplorer应助光亮友安采纳,获得10
9秒前
开朗的猕猴桃完成签到,获得积分10
9秒前
呆呆发布了新的文献求助10
10秒前
猪肉铺发布了新的文献求助10
10秒前
SCINEXUS完成签到,获得积分0
10秒前
小小佳作发布了新的文献求助10
10秒前
11秒前
很在乎完成签到 ,获得积分10
11秒前
Ren发布了新的文献求助10
11秒前
zrq2511发布了新的文献求助10
12秒前
linlin完成签到,获得积分10
12秒前
dierda发布了新的文献求助10
12秒前
sweettt3完成签到,获得积分10
12秒前
13秒前
小高同学发布了新的文献求助10
13秒前
Ava应助退退退上尉采纳,获得10
13秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183