生物
神经保护
转录组
神经科学
视网膜
视网膜神经节细胞
轴突
视神经
再生(生物学)
细胞生物学
神经节
基因表达
电池类型
基因
细胞
遗传学
作者
Nicholas M. Tran,Karthik Shekhar,Irene E. Whitney,Anne Jacobi,Inbal Benhar,Guosong Hong,Wenjun Yan,Xian Adiconis,McKinzie E. Arnold,Jung Min Lee,Joshua Z. Levin,Dingchang Lin,Chen Wang,Charles M. Lieber,Aviv Regev,Zhigang He,Joshua R. Sanes
出处
期刊:Neuron
[Elsevier]
日期:2019-12-01
卷期号:104 (6): 1039-1055.e12
被引量:462
标识
DOI:10.1016/j.neuron.2019.11.006
摘要
Neuronal types in the central nervous system differ dramatically in their resilience to injury or other insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ∼80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC; characterized transcriptomic, physiological, and morphological changes that preceded degeneration; and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.
科研通智能强力驱动
Strongly Powered by AbleSci AI