傅里叶变换光谱学
傅里叶变换红外光谱
深度学习
人工神经网络
功率(物理)
分辨率(逻辑)
傅里叶变换
计算机科学
分光计
光谱密度
谱密度估计
人工智能
电子工程
炸薯条
算法
光学
电信
工程类
物理
量子力学
作者
Lipeng Xia,Aoxue Zhang,Ting Li,Yi Ming Zou
摘要
We proposed and demonstrated a deep learning assisted on-chip Fourier transform spectroscopy (FTS), using an artificial neural networks (ANN) to analyze the output stationary interferogram. It is found that, compared with the conventional FTS, the resolution could be improved without increasing the maximum path length difference and the number of MZIs, thus reducing the burden of adding more power budget. This new concept of enhancing spectral resolution may hold great promise for potential applications in integrated FTS.
科研通智能强力驱动
Strongly Powered by AbleSci AI