In this work, 3D highly electrically conductive cellulose nanofibers (CNF)/Ti 3 C 2 T x MXene aerogels (CTA) with aligned porous structures are fabricated by directional freezing followed by freeze-drying technique, and the thermally annealed CTA (TCTA)/epoxy nanocomposites are then fabricated by thermal annealing of CTA, subsequent vacuum-assisted impregnation and curing method. Results show that TCTA/epoxy nanocomposites possess 3D highly conductive networks with ultralow percolation threshold of 0.20 vol% Ti 3 C 2 T x . When the volume fraction of Ti 3 C 2 T x is 1.38 vol%, the electrical conductivity ( σ ), electromagnetic interference shielding effectiveness (EMI SE), and SE divided by thickness (SE/d) values of the TCTA/epoxy nanocomposites reach 1672 S m -1 , 74 dB, and 37 dB mm -1 , respectively, which are almost the highest values compared to those of polymer nanocomposites reported previously at the same filler content. In addition, compared to those of the samples without Ti 3 C 2 T x , the storage modulus and heat-resistance index of TCTA/epoxy nanocomposites are enhanced to 9792.5 MPa and 310.7°C, increased by 62% and 6.9°C, respectively, presenting outstanding mechanical properties and thermal stabilities. The fabricated lightweight, easy-to-process, and shapeable TCTA/epoxy nanocomposites with superior EMI SE values, excellent mechanical properties, and thermal stabilities greatly broaden the applications of MXene-based polymer composites in the field of EMI shielding.