Microstructure tailoring of solid oxide electrolysis cell air electrode to boost performance and long-term durability

材料科学 微观结构 电解质 电解 电极 氧化物 耐久性 复合材料 化学工程 固体氧化物燃料电池 电解槽 电化学 冶金 化学 工程类 物理化学
作者
Sangcho Kim,Dong Woo Joh,Dong-Young Lee,Ji‐Eun Lee,Hye Sung Kim,Muhammad Zubair Khan,Jong‐Eun Hong,Seung‐Bok Lee,Seok Joo Park,Rak‐Hyun Song,Muhammad Taqi Mehran,Choong Kyun Rhee,Tak‐Hyoung Lim
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:410: 128318-128318 被引量:51
标识
DOI:10.1016/j.cej.2020.128318
摘要

Abstract High-temperature solid oxide electrolysis cells (SOECs) offer higher efficiency compared to other electrochemical water splitting technologies and potentially could provide future technology to tackle the huge energy storage requirements created by the surge of intermittent solar and wind electricity availability. However, the lower electrochemical performance and long-term degradation of the SOEC electrodes are bottlenecks in the implementation of this technology. Herein, we report microstructure tailoring of a solid oxide cell air electrode via a simple method to significantly enhance the electrochemical performance and boost the air electrode stability. The air electrode microstructure was tailored by employing a graphite pore former and the cells were tested for SOEC performance and long-term durability under fuel cell (FC)-electrolysis cell (EC) cycles and a 1000 h chronopotentiometry test. The microstructural optimization resulted in a 30% increase in the SOEC performance for H2O conversion at 800 °C and significantly improved the long-term durability. Post-test SEM and TEM analyses indicated that, due to the microstructure tailoring, delamination of the air electrode was avoided and resistive interfaces forming Sr diffusion was suppressed within the barrier layer and electrolyte. Due to air electrode microstructure optimization, the buildup of the oxygen partial pressure across the electrolyte/barrier layer/air-electrode was reduced owing to increased triple phase boundary density, porosity at the interface, and larger active surface area of the electrode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rhb发布了新的文献求助10
1秒前
chen完成签到,获得积分10
2秒前
今后应助橙子采纳,获得10
2秒前
汉堡包应助直率天亦采纳,获得10
5秒前
香蕉觅云应助rhb采纳,获得10
5秒前
5秒前
无花果应助jella采纳,获得10
7秒前
Boren完成签到,获得积分10
8秒前
雨濛濛完成签到,获得积分10
9秒前
胡里奥完成签到 ,获得积分10
10秒前
Determination关注了科研通微信公众号
11秒前
11秒前
木目今欣完成签到,获得积分10
13秒前
13秒前
chenjunan完成签到,获得积分10
13秒前
科目三应助义气的元绿采纳,获得10
14秒前
14秒前
zzzzz完成签到,获得积分10
15秒前
15秒前
15秒前
lei发布了新的文献求助10
15秒前
hh完成签到,获得积分10
16秒前
莫西莫西完成签到 ,获得积分10
17秒前
18秒前
羽化成仙发布了新的文献求助10
19秒前
20秒前
hh发布了新的文献求助10
20秒前
快乐仙知发布了新的文献求助10
21秒前
chenjunan发布了新的文献求助10
22秒前
23秒前
小中发布了新的文献求助10
26秒前
annafan应助阿杜采纳,获得10
26秒前
甘草不甜发布了新的文献求助10
27秒前
jolin发布了新的文献求助10
28秒前
高木同学发布了新的文献求助10
29秒前
annafan应助称心穆采纳,获得10
30秒前
32秒前
隐形曼青应助onmyway采纳,获得30
32秒前
liang完成签到,获得积分10
32秒前
35秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416168
求助须知:如何正确求助?哪些是违规求助? 3017855
关于积分的说明 8882900
捐赠科研通 2705481
什么是DOI,文献DOI怎么找? 1483611
科研通“疑难数据库(出版商)”最低求助积分说明 685769
邀请新用户注册赠送积分活动 680853