Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon

遥感 环境科学 数码相机 土壤碳 RGB颜色模型 高光谱成像 精准农业 含水量 土壤科学 计算机科学 土壤水分 人工智能 地质学 地理 农业 考古 岩土工程
作者
Asa Gholizadeh,Mohammadmehdi Saberioon,Raphael A. Viscarra Rossel,Luboš Borůvka,Aleš Klement
出处
期刊:Geoderma [Elsevier BV]
卷期号:357: 113972-113972 被引量:42
标识
DOI:10.1016/j.geoderma.2019.113972
摘要

Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400–700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R2 = 0.85 and RMSEp = 0.11%, which had higher R2 and similar RMSEp compared to those obtained from the spectroscopy (R2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
1秒前
rksm完成签到 ,获得积分10
1秒前
1秒前
Lucas应助聪慧芷巧采纳,获得10
1秒前
1秒前
呼呼完成签到,获得积分10
1秒前
义气的咖啡豆完成签到,获得积分10
1秒前
洞悉完成签到,获得积分10
2秒前
2秒前
脑洞疼应助超帅的鹏飞采纳,获得10
3秒前
马夋完成签到,获得积分10
3秒前
Ashley完成签到,获得积分20
3秒前
大强完成签到,获得积分10
3秒前
海绵饱饱完成签到,获得积分10
3秒前
Serenity发布了新的文献求助10
3秒前
peterhuai发布了新的文献求助10
4秒前
wtzhang16完成签到 ,获得积分10
4秒前
天天天才完成签到,获得积分10
4秒前
A0完成签到,获得积分10
4秒前
山雀发布了新的文献求助10
4秒前
ZTLlele完成签到 ,获得积分10
5秒前
5秒前
郭凯丽发布了新的文献求助10
5秒前
ikear发布了新的文献求助30
6秒前
7秒前
春天的粥完成签到 ,获得积分10
7秒前
7秒前
wanci应助leah96采纳,获得10
7秒前
7秒前
小周发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
研友_Y59785应助淡漠采纳,获得10
9秒前
guanshujuan发布了新的文献求助10
9秒前
丘比特应助peterhuai采纳,获得10
9秒前
路易斯完成签到,获得积分10
9秒前
和和完成签到,获得积分10
10秒前
Mason完成签到,获得积分10
10秒前
Emma完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044