Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon

遥感 环境科学 数码相机 土壤碳 RGB颜色模型 高光谱成像 精准农业 含水量 土壤科学 计算机科学 土壤水分 人工智能 地质学 地理 农业 考古 岩土工程
作者
Asa Gholizadeh,Mohammadmehdi Saberioon,Raphael A. Viscarra Rossel,Luboš Borůvka,Aleš Klement
出处
期刊:Geoderma [Elsevier]
卷期号:357: 113972-113972 被引量:42
标识
DOI:10.1016/j.geoderma.2019.113972
摘要

Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400–700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R2 = 0.85 and RMSEp = 0.11%, which had higher R2 and similar RMSEp compared to those obtained from the spectroscopy (R2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sakurasamada完成签到,获得积分10
刚刚
jiejie发布了新的文献求助10
1秒前
1秒前
lyl发布了新的文献求助10
1秒前
董嘉景完成签到,获得积分10
2秒前
Ber发布了新的文献求助10
2秒前
丁言笑发布了新的文献求助10
2秒前
早日成发布了新的文献求助10
2秒前
2秒前
冯梦颖发布了新的文献求助10
2秒前
QIQI发布了新的文献求助10
3秒前
4秒前
4秒前
Lii开心发布了新的文献求助30
6秒前
6秒前
7秒前
深情安青应助开朗的幻桃采纳,获得10
8秒前
耍酷问兰发布了新的文献求助10
9秒前
111完成签到,获得积分10
9秒前
9秒前
cola121发布了新的文献求助10
9秒前
宋宋宋2完成签到,获得积分10
10秒前
jelly10发布了新的文献求助30
10秒前
Lucas应助失眠的夏柳采纳,获得10
11秒前
打打应助撖堡包采纳,获得30
11秒前
laruijoint完成签到,获得积分10
12秒前
超级幼旋应助迷路的夏之采纳,获得10
12秒前
13秒前
zjtttt发布了新的文献求助10
13秒前
在水一方应助jiejie采纳,获得10
13秒前
13秒前
科目三应助拼搏幻翠采纳,获得50
14秒前
14秒前
14秒前
晟sheng完成签到 ,获得积分10
14秒前
clyhg发布了新的文献求助10
14秒前
科研通AI6应助南西采纳,获得10
14秒前
lll发布了新的文献求助10
16秒前
17秒前
atonnng发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514