Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon

遥感 环境科学 数码相机 土壤碳 RGB颜色模型 高光谱成像 精准农业 含水量 土壤科学 计算机科学 土壤水分 人工智能 地质学 地理 农业 考古 岩土工程
作者
Asa Gholizadeh,Mohammadmehdi Saberioon,Raphael A. Viscarra Rossel,Luboš Borůvka,Aleš Klement
出处
期刊:Geoderma [Elsevier]
卷期号:357: 113972-113972 被引量:42
标识
DOI:10.1016/j.geoderma.2019.113972
摘要

Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400–700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R2 = 0.85 and RMSEp = 0.11%, which had higher R2 and similar RMSEp compared to those obtained from the spectroscopy (R2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾曾完成签到,获得积分10
刚刚
小橘完成签到,获得积分10
1秒前
小璐sunny完成签到,获得积分10
1秒前
传奇3应助王学智采纳,获得10
1秒前
1秒前
lucyliu完成签到 ,获得积分10
2秒前
太叔明辉发布了新的文献求助10
2秒前
Bronx完成签到,获得积分10
2秒前
3秒前
123456完成签到,获得积分10
3秒前
第3行星发布了新的文献求助10
3秒前
锅大离谱完成签到,获得积分20
5秒前
支妙完成签到,获得积分10
6秒前
6秒前
鲤鱼一鸣完成签到,获得积分10
6秒前
怕黑南琴完成签到 ,获得积分10
6秒前
橘子完成签到,获得积分10
6秒前
五分糖完成签到,获得积分10
6秒前
pan发布了新的文献求助10
6秒前
若隐若现完成签到 ,获得积分10
6秒前
7秒前
unchanged完成签到,获得积分10
7秒前
joye完成签到 ,获得积分10
7秒前
朴实的面包完成签到 ,获得积分10
7秒前
7秒前
7秒前
悠明夜月完成签到 ,获得积分10
8秒前
劲秉应助黄橙子采纳,获得10
8秒前
王学禹完成签到,获得积分10
8秒前
夏沫星星球完成签到 ,获得积分10
8秒前
111完成签到,获得积分10
8秒前
8秒前
淡定白易完成签到,获得积分10
8秒前
jin_strive发布了新的文献求助50
9秒前
淘宝叮咚完成签到,获得积分10
9秒前
9秒前
Aspirin完成签到,获得积分10
10秒前
英俊的铭应助第3行星采纳,获得10
10秒前
小太阳完成签到,获得积分10
11秒前
咖啡味椰果完成签到 ,获得积分10
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471793
求助须知:如何正确求助?哪些是违规求助? 3064675
关于积分的说明 9089704
捐赠科研通 2755407
什么是DOI,文献DOI怎么找? 1512031
邀请新用户注册赠送积分活动 698629
科研通“疑难数据库(出版商)”最低求助积分说明 698517