Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon

遥感 环境科学 数码相机 土壤碳 RGB颜色模型 高光谱成像 精准农业 含水量 土壤科学 计算机科学 土壤水分 人工智能 地质学 地理 农业 考古 岩土工程
作者
Asa Gholizadeh,Mohammadmehdi Saberioon,Raphael A. Viscarra Rossel,Luboš Borůvka,Aleš Klement
出处
期刊:Geoderma [Elsevier]
卷期号:357: 113972-113972 被引量:42
标识
DOI:10.1016/j.geoderma.2019.113972
摘要

Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400–700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R2 = 0.85 and RMSEp = 0.11%, which had higher R2 and similar RMSEp compared to those obtained from the spectroscopy (R2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
污水发布了新的文献求助50
刚刚
1秒前
LMY完成签到 ,获得积分10
1秒前
善学以致用应助jojo144采纳,获得10
1秒前
害羞聋五完成签到,获得积分10
2秒前
2秒前
orixero应助三十六采纳,获得10
2秒前
小蘑菇应助生动丹珍采纳,获得10
2秒前
时2完成签到,获得积分10
2秒前
2秒前
2秒前
大个应助Wangdx采纳,获得10
3秒前
柒月完成签到 ,获得积分10
3秒前
3秒前
3秒前
任性雍发布了新的文献求助10
4秒前
4秒前
尹小末发布了新的文献求助10
5秒前
5秒前
顾矜应助风中的小松鼠采纳,获得10
5秒前
MitsubaAoki完成签到,获得积分10
6秒前
田様应助幽默厉采纳,获得10
6秒前
116发布了新的文献求助10
7秒前
mira完成签到,获得积分10
7秒前
彼得应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Zx_1993应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
F_echo应助科研通管家采纳,获得20
8秒前
凝眸处应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
彼得应助科研通管家采纳,获得10
8秒前
日照金峰发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887