Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon

遥感 环境科学 数码相机 土壤碳 RGB颜色模型 高光谱成像 精准农业 含水量 土壤科学 计算机科学 土壤水分 人工智能 地质学 地理 农业 考古 岩土工程
作者
Asa Gholizadeh,Mohammadmehdi Saberioon,Raphael A. Viscarra Rossel,Luboš Borůvka,Aleš Klement
出处
期刊:Geoderma [Elsevier]
卷期号:357: 113972-113972 被引量:42
标识
DOI:10.1016/j.geoderma.2019.113972
摘要

Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400–700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R2 = 0.85 and RMSEp = 0.11%, which had higher R2 and similar RMSEp compared to those obtained from the spectroscopy (R2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwj完成签到,获得积分10
1秒前
6秒前
共享精神应助自觉的小凝采纳,获得10
10秒前
JamesPei应助琪求好运采纳,获得10
10秒前
11秒前
11秒前
11秒前
guard发布了新的文献求助10
11秒前
Sweety-完成签到 ,获得积分10
12秒前
12秒前
达拉崩吧完成签到,获得积分10
13秒前
童万明完成签到,获得积分20
14秒前
没烦恼完成签到,获得积分10
15秒前
zz完成签到 ,获得积分10
15秒前
Owen应助TingtingGZ采纳,获得10
15秒前
pomfret完成签到 ,获得积分10
17秒前
没烦恼发布了新的文献求助10
19秒前
童万明发布了新的文献求助10
19秒前
阳阳完成签到,获得积分10
20秒前
25秒前
四月是你的谎言完成签到 ,获得积分10
29秒前
王昭完成签到 ,获得积分10
30秒前
112233发布了新的文献求助20
30秒前
31秒前
31秒前
富华路完成签到,获得积分10
32秒前
32秒前
32秒前
壮观青亦完成签到 ,获得积分10
33秒前
祁问儿完成签到 ,获得积分10
34秒前
Ccccn完成签到,获得积分10
34秒前
35秒前
36秒前
不吃香菜发布了新的文献求助30
37秒前
RLV完成签到,获得积分10
37秒前
Shuaibin_Pei发布了新的文献求助10
39秒前
科研混子完成签到,获得积分10
40秒前
王志新完成签到,获得积分10
41秒前
dly7777发布了新的文献求助10
41秒前
cff完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511