Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon

遥感 环境科学 数码相机 土壤碳 RGB颜色模型 高光谱成像 精准农业 含水量 土壤科学 计算机科学 土壤水分 人工智能 地质学 地理 农业 考古 岩土工程
作者
Asa Gholizadeh,Mohammadmehdi Saberioon,Raphael A. Viscarra Rossel,Luboš Borůvka,Aleš Klement
出处
期刊:Geoderma [Elsevier]
卷期号:357: 113972-113972 被引量:42
标识
DOI:10.1016/j.geoderma.2019.113972
摘要

Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400–700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R2 = 0.85 and RMSEp = 0.11%, which had higher R2 and similar RMSEp compared to those obtained from the spectroscopy (R2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
红叶完成签到,获得积分10
1秒前
斯文败类应助99采纳,获得10
1秒前
初心完成签到 ,获得积分10
2秒前
2秒前
niuniu顺利毕业完成签到 ,获得积分10
4秒前
甜蜜的荟完成签到,获得积分10
5秒前
CLY发布了新的文献求助10
5秒前
aa完成签到,获得积分10
5秒前
8秒前
聪明小丸子完成签到,获得积分10
8秒前
时尚中二完成签到,获得积分10
11秒前
燕燕完成签到,获得积分10
12秒前
爱笑的千寻完成签到,获得积分10
12秒前
一个小胖子完成签到,获得积分10
13秒前
zxt完成签到,获得积分10
15秒前
15秒前
甜甜圈完成签到 ,获得积分10
15秒前
kehe完成签到 ,获得积分10
15秒前
fuluyuzhe_668完成签到,获得积分10
16秒前
叶颤发布了新的文献求助20
16秒前
量子星尘发布了新的文献求助10
17秒前
Alex完成签到,获得积分10
17秒前
win完成签到 ,获得积分10
17秒前
田様应助大饼饼饼采纳,获得30
18秒前
吴旭东发布了新的文献求助10
19秒前
花卷完成签到,获得积分10
19秒前
熬夜波比应助yydy采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
小杨完成签到,获得积分10
20秒前
九号机完成签到 ,获得积分10
21秒前
淡定白枫完成签到,获得积分10
21秒前
kehe!完成签到 ,获得积分0
21秒前
luo完成签到 ,获得积分10
21秒前
22秒前
不爱看文献头疼完成签到,获得积分10
23秒前
淡定的棒球完成签到 ,获得积分10
23秒前
小小小乐完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071