Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes

凝聚态物理 自旋极化 电致发光 材料科学 物理 自旋电子学 光电子学 电介质 电子 铁磁性 纳米技术 量子力学 图层(电子)
作者
Hengxing Xu,Miaosheng Wang,Zhi Yu,Kai Wang,Bin Hu
出处
期刊:Advances in Physics [Taylor & Francis]
卷期号:68 (2): 49-121 被引量:71
标识
DOI:10.1080/00018732.2019.1590295
摘要

Magnetic field can influence photoluminescence, electroluminescence, photocurrent, injection current, and dielectric constant in organic materials, organic–inorganic hybrids, and nanoparticles at room temperature by re-distributing spin populations, generating emerging phenomena including magneto-photoluminescence, magneto-electroluminescence, magneto-photocurrent, magneto-electrical current, and magneto-dielectrics. These so-called intrinsic magnetic field effects (MFEs) can be observed in linear and non-linear regimes under one-photon and two-photon excitations in both low- and high-orbital materials. On the other hand, spin injection can be realized to influence spin-dependent excited states and electrical conduction via organic/ferromagnetic hybrid interface, leading to extrinsic MFEs. In last decades, MFEs have been serving as a unique experimental tool to reveal spin-dependent processes in excited states, electrical transport, and polarization in light-emitting diodes, solar cells, memories, field-effect transistors, and lasing devices. Very recently, they provide critical understanding on the operating mechanisms in advanced organic optoelectronic materials such as thermally activated delayed fluorescence light-emitting materials, non-fullerene photovoltaic bulk-heterojunctions, and organic–inorganic hybrid perovskites. While MFEs were initially realized by operating spin states in organic semiconducting materials with delocalized π electrons under negligible orbital momentum, recent studies indicate that MFEs can also be achieved under strong orbital momentum and Rashba effect in light emission, photovoltaics, and dielectric polarization. The transition of MFEs from the spin regime to the orbital regime creates new opportunities to versatilely control light-emitting, photovoltaic, lasing, and dielectric properties by using long-range Coulomb and short-range spin–spin interactions between orbitals. This article reviews recent progress on MFEs with the focus on elucidating fundamental mechanisms to control optical, electrical, optoelectronic, and polarization behaviors via spin-dependent excited states, electrical transport, and dielectric polarization. In this article both representative experimental results and mainstream theoretical models are presented to understand MFEs in the spin and orbital regimes for organic materials, nanoparticles, and organic–inorganic hybrids under linear and non-linear excitation regimes with emphasis on underlying spin-dependent processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助CTX采纳,获得10
1秒前
1秒前
香蕉觅云应助清欢采纳,获得10
1秒前
2秒前
xiaosee完成签到,获得积分10
2秒前
2秒前
阿十发布了新的文献求助10
3秒前
4秒前
4秒前
israr发布了新的文献求助10
4秒前
5秒前
xiaosee发布了新的文献求助10
5秒前
Hannahcx完成签到,获得积分10
5秒前
YANGVV完成签到 ,获得积分10
6秒前
chiech给chiech的求助进行了留言
6秒前
6秒前
7秒前
机智初夏发布了新的文献求助10
7秒前
尊敬怀薇完成签到,获得积分10
8秒前
8秒前
8秒前
小精灵发布了新的文献求助30
9秒前
xu发布了新的文献求助30
9秒前
9秒前
感动城完成签到,获得积分10
10秒前
文静的白开水完成签到,获得积分10
10秒前
LYSM完成签到,获得积分0
10秒前
10秒前
JHGG应助诶呀采纳,获得30
11秒前
矮小的雅香完成签到,获得积分10
11秒前
快乐仙知完成签到 ,获得积分10
11秒前
12秒前
hd完成签到,获得积分10
12秒前
集力申完成签到,获得积分10
13秒前
13秒前
13秒前
sunshine发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756148
求助须知:如何正确求助?哪些是违规求助? 3299357
关于积分的说明 10109848
捐赠科研通 3013911
什么是DOI,文献DOI怎么找? 1655353
邀请新用户注册赠送积分活动 789722
科研通“疑难数据库(出版商)”最低求助积分说明 753415