纤维束成像
磁共振弥散成像
水准点(测量)
计算机科学
神经影像学
透视图(图形)
数据科学
领域(数学)
可靠性(半导体)
医学物理学
人工智能
心理学
医学
磁共振成像
神经科学
放射科
地图学
地理
数学
物理
量子力学
功率(物理)
纯数学
作者
Kurt G. Schilling,Alessandro Daducci,Klaus H. Maier‐Hein,Cyril Poupon,Jean‐Christophe Houde,Vishwesh Nath,Adam W. Anderson,Bennett A. Landman,Maxime Descoteaux
标识
DOI:10.1016/j.mri.2018.11.014
摘要
Diffusion MRI (dMRI) fiber tractography has become a pillar of the neuroimaging community due to its ability to noninvasively map the structural connectivity of the brain. Despite widespread use in clinical and research domains, these methods suffer from several potential drawbacks or limitations. Thus, validating the accuracy and reproducibility of techniques is critical for sound scientific conclusions and effective clinical outcomes. Towards this end, a number of international benchmark competitions, or "challenges", has been organized by the diffusion MRI community in order to investigate the reliability of the tractography process by providing a platform to compare algorithms and results in a fair manner, and evaluate common and emerging algorithms in an effort to advance the state of the field. In this paper, we summarize the lessons from a decade of challenges in tractography, and give perspective on the past, present, and future "challenges" that the field of diffusion tractography faces.
科研通智能强力驱动
Strongly Powered by AbleSci AI