PCI Planning Based on Binary Quadratic Programming in LTE/LTE-A Networks

计算机科学 二进制数 启发式 算法 离散数学 理论计算机科学 数学 人工智能 算术
作者
Jihong Gui,Zhipeng Jiang,Suixiang Gao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 203-214 被引量:10
标识
DOI:10.1109/access.2018.2885313
摘要

In recent years, interference has played an increasingly significant part in bulkier and denser Long Term Evolution (LTE/LTE-Advanced) networks. Though intra-cell interference is successfully improved by Orthogonal Frequency Division Multiple Access (OFDMA), inter-cell interference (ICI) could cause a degradation of throughput and significantly impact Signal-to-Noise-Ratio (SINR) in the downlink (DL) network. Physical Cell ID (PCI) planning, an effective approach to eliminate ICI, is required to reduce collision, confusion and mod $q$ interference, where $q=3$ for Single-Input Single-Output (SISO) system, and $q=6$ for Multiple-Input Multiple-Output (MIMO) system. In this study, a new definition of neighborhood relations was proposed based on the measurement report (MR) data in the actual network. Binary quadratic programming (BQP) model was built for PCI planning through a series of model deductions and mathematical proofs. Since BQP is known as NP-hard, a heuristic Greedy algorithm was proposed and its low complexity both in time and space can ensure large-scale computing. Finally, based on the raw data extracted from the actual SISO system network and the simulation calculation of MATLAB, the experimental results demonstrated that Greedy algorithm not only eliminates conflict and confusion completely, but also reduces the mod 3 interference of 26.213% more than the baseline scheme and far more than the improvement ratio of 4.436% given by the classical graph coloring algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
学科共进完成签到,获得积分10
1秒前
百草27完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
绵马紫萁发布了新的文献求助10
4秒前
5秒前
fzhou完成签到 ,获得积分10
5秒前
尘雾发布了新的文献求助10
5秒前
6秒前
一一发布了新的文献求助20
6秒前
6秒前
Aixia完成签到 ,获得积分10
7秒前
葡萄糖完成签到,获得积分10
7秒前
哈哈完成签到,获得积分10
7秒前
在水一方应助CC采纳,获得10
7秒前
7秒前
余笙完成签到 ,获得积分10
8秒前
神勇的雅香应助科研混子采纳,获得10
8秒前
TT发布了新的文献求助10
9秒前
李顺完成签到,获得积分20
10秒前
ayin发布了新的文献求助10
10秒前
wait发布了新的文献求助10
10秒前
我是站长才怪应助xg采纳,获得10
11秒前
童话艺术佳完成签到,获得积分10
11秒前
稀罕你完成签到,获得积分10
11秒前
junzilan发布了新的文献求助10
11秒前
anny.white完成签到,获得积分10
12秒前
科研通AI5应助平常的毛豆采纳,获得10
14秒前
SciGPT应助paul采纳,获得10
17秒前
19秒前
英姑应助书生采纳,获得10
20秒前
科研钓鱼佬完成签到,获得积分10
21秒前
23秒前
petrichor应助C_Cppp采纳,获得10
23秒前
nan完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824