A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice

计算机科学 不确定度量化 相关性(法律) 结构化 优势和劣势 管理科学 稳健优化 风险分析(工程) 钥匙(锁) 不确定度分析 数学优化 机器学习 数学 模拟 医学 认识论 财务 哲学 计算机安全 经济 法学 政治学
作者
Hannah Bakker,Fabian Dunke,Stefan Nickel
出处
期刊:Omega [Elsevier]
卷期号:96: 102080-102080 被引量:80
标识
DOI:10.1016/j.omega.2019.06.006
摘要

While methods for optimization under uncertainty have been studied intensely over the past decades, the explicit consideration of the interplay between uncertainty and time has gained increasing attention rather recently. Problems requiring a sequence of decisions in reaction to uncertainty realizations are of crucial relevance in real-world applications, e.g., supply chain planning, scheduling, or finance. Several methods emphasizing varying aspects of these problems have been developed, mainly triggered by a particular application. Although these methods all intend to solve a similar underlying problem, they differ strongly with respect to the uncertainty representation, the prescriptive solution information they provide and the means of performance evaluation. The result is a fragmented picture of uncertain multi-stage problems – both from a methodological and an application-oriented perspective. It fails to interconnect results from different disciplines or even comparing strengths and weaknesses of individual methods in particular applications. This review aims at integrating the different methods for solving uncertainty inflicted multi-stage optimization problems into a broader picture, thereby paving the way for more comprehensive approaches to sequential decision making under uncertainty. For this purpose, a description of the methods along with their historic development is given first. Secondly, an overview on their main areas of application is provided. We conclude that decoupling uncertainty models from solution methods and developing standardized performance measures represent key steps for organizing multi-stage optimization under uncertainty and for eliciting further potentials of yet unexplored combinations of uncertainty models and solution methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从全世界路过完成签到 ,获得积分10
刚刚
1秒前
白白完成签到,获得积分10
1秒前
3秒前
Baccano发布了新的文献求助10
3秒前
飞快的雁完成签到 ,获得积分10
4秒前
6秒前
WD完成签到,获得积分10
7秒前
万能图书馆应助2182265539采纳,获得10
9秒前
斯文败类应助结实以蓝采纳,获得10
10秒前
lixiaolu完成签到 ,获得积分10
12秒前
完美世界应助回忆的天空采纳,获得10
12秒前
CodeCraft应助jackie able采纳,获得10
12秒前
Sigma完成签到,获得积分20
13秒前
研友_VZG7GZ应助小胖胖采纳,获得10
13秒前
joshar完成签到,获得积分10
13秒前
panpan完成签到 ,获得积分10
14秒前
18秒前
优美的幼蓉完成签到,获得积分10
19秒前
烂漫的初南完成签到,获得积分10
19秒前
19秒前
20秒前
CodeCraft应助小绿孩不高兴采纳,获得10
20秒前
小胖胖完成签到,获得积分10
21秒前
NexusExplorer应助魔幻哈密瓜采纳,获得10
21秒前
orixero应助东77采纳,获得10
22秒前
葡萄子完成签到 ,获得积分10
23秒前
RONG发布了新的文献求助10
23秒前
流禾乙豫完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助30
24秒前
24秒前
2182265539发布了新的文献求助10
25秒前
jackie able发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
baize应助科研通管家采纳,获得20
27秒前
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812